Python| TensorFlow nn.softplus()
Tensorflow 是谷歌开发的开源机器学习库。它的应用之一是开发深度神经网络。
模块tensorflow.nn
为许多基本的神经网络操作提供支持。
激活函数是应用于神经网络层的输出的函数,然后将其作为输入传递给下一层。激活函数是神经网络的重要组成部分,因为它们提供非线性,没有它,神经网络会简化为单纯的逻辑回归模型。许多激活函数之一是 Softplus函数,定义为 .
传统的激活函数如 sigmoid 和双曲正切有上下界,而 softplus函数的输出范围为 (0, ∞)。 softplus函数的导数是 ,也就是 sigmoid函数。 softplus函数与 Rectified Linear Unit (ReLU)函数非常相似,主要区别在于 softplus函数在 x = 0 处的可微性。Zheng 等人的研究论文“Improving deep neural networks using softplus units”。 (2015) 表明,与 ReLU函数相比,softplus 为深度神经网络提供了更多的稳定性和性能。然而,通常首选 ReLU,因为它易于计算及其导数。激活函数及其导数的计算是神经网络中的常见操作,与 softplus函数相比,ReLU 提供了更快的前向和后向传播。
函数nn.softplus()
[别名math.softplus
] 为 Tensorflow 中的 softplus 提供支持。
Syntax: tf.nn.softplus(features, name=None) or tf.math.softplus(features, name=None)
Parameters:
features: A tensor of any of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
name (optional): The name for the operation.
Return type: A tensor with the same type as that of features.
代码#1:
Python3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5], dtype = tf.float32)
# Applying the softplus function and
# storing the result in 'b'
b = tf.nn.softplus(a, name ='softplus')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
# Applying the softplus function and
# storing the result in 'b'
b = tf.nn.softplus(a, name ='softplus')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.nn.softplus")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input type: Tensor("Const:0", shape=(6, ), dtype=float32)
Input: [ 1. -0.5 3.4000001 -2.0999999 0. -6.5 ]
Return type: Tensor("softplus:0", shape=(6, ), dtype=float32)
Output: [ 1.31326163e+00 4.74076986e-01 3.43282866e+00 1.15519524e-01
6.93147182e-01 1.50233845e-03]
代码 #2:可视化
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
# Applying the softplus function and
# storing the result in 'b'
b = tf.nn.softplus(a, name ='softplus')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.nn.softplus")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input: [-5. -4.28571429 -3.57142857 -2.85714286 -2.14285714 -1.42857143
-0.71428571 0. 0.71428571 1.42857143 2.14285714 2.85714286
3.57142857 4.28571429 5. ]
Output: [ 0.00671535 0.01366993 0.02772767 0.05584391 0.11093221 0.21482992
0.39846846 0.69314718 1.11275418 1.64340135 2.25378936 2.91298677
3.59915624 4.29938421 5.00671535]