📅  最后修改于: 2020-12-14 05:41:14             🧑  作者: Mango
卷积是对两个函数f和g的数学运算。在这种情况下,函数f和g是图像,因为图像也是二维函数。
为了对图像执行卷积,采取以下步骤-
我们使用OpenCV函数filter2D将卷积应用于图像。可以在Imgproc软件包下找到。其语法如下-
filter2D(src, dst, depth , kernel, anchor, delta, BORDER_DEFAULT );
函数参数描述如下-
Sr.No. | Argument & Description |
---|---|
1 |
src It is source image. |
2 |
dst It is destination image. |
3 |
depth It is the depth of dst. A negative value (such as -1) indicates that the depth is the same as the source. |
4 |
kernel It is the kernel to be scanned through the image. |
5 |
anchor It is the position of the anchor relative to its kernel. The location Point (-1, -1) indicates the center by default. |
6 |
delta It is a value to be added to each pixel during the convolution. By default it is 0. |
7 |
BORDER_DEFAULT We let this value by default. |
下面的示例演示如何使用Imgproc类对灰度图像执行卷积。
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;
public class convolution {
public static void main( String[] args ) {
try {
int kernelSize = 3;
System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
Mat source = Highgui.imread("grayscale.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
Mat destination = new Mat(source.rows(),source.cols(),source.type());
Mat kernel = new Mat(kernelSize,kernelSize, CvType.CV_32F) {
{
put(0,0,0);
put(0,1,0);
put(0,2,0);
put(1,0,0);
put(1,1,1);
put(1,2,0);
put(2,0,0);
put(2,1,0);
put(2,2,0);
}
};
Imgproc.filter2D(source, destination, -1, kernel);
Highgui.imwrite("original.jpg", destination);
} catch (Exception e) {
System.out.println("Error:" + e.getMessage());
}
}
}
在此示例中,我们将图像与以下滤镜(内核)进行卷积。此滤镜可产生原始图像-
0 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |