📜  分段树中的延迟传播

📅  最后修改于: 2021-04-17 09:46:47             🧑  作者: Mango

在上一篇文章中介绍了分段树,并给出了一个范围和问题的示例。我们使用相同的“给定范围之和”问题来解释延迟传播

更新如何在“简单细分树”中工作?
在上一篇文章中,调用了update函数以仅更新数组中的单个值。请注意,数组中的单个值更新可能导致段树中的多个更新,因为可能有许多段树节点在其范围内具有单个数组元素。

以下是上一篇文章中使用的简单逻辑。
1)从段树的根开始。
2)如果要更新的数组索引不在当前节点的范围内,则返回
3)否则更新当前节点并为子节点重现。

以下是上一篇文章中摘录的代码。

/* A recursive function to update the nodes which have the given
   index in their range. The following are parameters
    tree[] --> segment tree
    si     -->  index of current node in segment tree.
                Initial value is passed as 0.
    ss and se --> Starting and ending indexes of array elements 
                  covered under this node of segment tree.
                  Initial values passed as 0 and n-1.
    i    --> index of the element to be updated. This index 
            is in input array.
   diff --> Value to be added to all nodes which have array
            index i in range */
void updateValueUtil(int tree[], int ss, int se, int i, 
                     int diff, int si)
{
    // Base Case: If the input index lies outside the range
    // of this segment
    if (i < ss || i > se)
        return;
  
    // If the input index is in range of this node, then
    // update the value of the node and its children
    st[si] = st[si] + diff;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, diff, 2*si + 1);
        updateValueUtil(st, mid+1, se, i, diff, 2*si + 2);
    }
}

如果一系列数组索引有更新怎么办?
例如,将10添加到数组中2到7的索引处的所有值。必须为从2到7的每个索引调用以上更新。我们可以通过编写函数updateRange()来相应地更新节点来避免多次调用。

/* Function to update segment tree for range update in input 
   array.
    si -> index of current node in segment tree
    ss and se -> Starting and ending indexes of elements for
                 which current nodes stores sum.
    us and ue -> starting and ending indexes of update query
    diff -> which we need to add in the range us to ue */
void updateRangeUtil(int si, int ss, int se, int us,
                     int ue, int diff)
{
    // out of range
    if (ss>se || ss>ue || se

延迟传播–优化以使范围更新更快

当有很多更新并且某个范围内完成更新时,我们可以推迟一些更新(避免在更新中进行递归调用),并且仅在需要时进行这些更新。

请记住,段树中的一个节点存储或表示一系列索引的查询结果。并且,如果此节点的范围在更新操作范围之内,则该节点的所有后代也必须更新。例如,考虑上图中的值为27的节点,此节点在3到5的索引处存储值的总和。如果我们的更新查询的范围是2到5,则需要更新此节点及其所有后代。使用惰性传播,我们仅更新值为27的节点,并通过将更新信息存储在称为“惰性节点”或“值”的单独节点中来推迟对其子项的更新。我们创建一个数组lazy [],它表示惰性节点。 lazy []的大小与表示段树的数组相同,在下面的代码中为tree []。

这个想法是将lazy []的所有元素初始化为0。lazy [i]中的值为0表示在段树中的节点i上没有挂起的更新。 lazy [i]的非零值意味着在对该节点进行任何查询之前,需要将此量添加到段树中的节点i上。

下面是修改后的更新方法。

// To update segment tree for change in array
// values at array indexes from us to ue.
updateRange(us, ue)
1) If current segment tree node has any pending
   update, then first add that pending update to
   current node.
2) If current node's range lies completely in 
   update query range.
....a) Update current node
....b) Postpone updates to children by setting 
       lazy value for children nodes.
3) If current node's range overlaps with update 
   range, follow the same approach as above simple
   update.
...a) Recur for left and right children.
...b) Update current node using results of left 
      and right calls.

查询函数也有变化吗?
由于我们已将更新更改为推迟其操作,因此如果对尚未更新的节点进行查询,则可能会出现问题。因此,我们还需要更新我们的查询方法,即上一篇文章中的getSumUtil。现在,getSumUtil()首先检查是否有挂起的更新,是否存在,然后更新节点。一旦确保完成挂起的更新,它将与之前的getSumUtil()相同。

以下是演示惰性传播工作的程序。

C/C++
// Program to show segment tree to demonstrate lazy
// propagation
#include 
#include 
#define MAX 1000
  
// Ideally, we should not use global variables and large
// constant-sized arrays, we have done it here for simplicity.
int tree[MAX] = {0};  // To store segment tree
int lazy[MAX] = {0};  // To store pending updates
  
/*  si -> index of current node in segment tree
    ss and se -> Starting and ending indexes of elements for
                 which current nodes stores sum.
    us and ue -> starting and ending indexes of update query
    diff -> which we need to add in the range us to ue */
void updateRangeUtil(int si, int ss, int se, int us,
                     int ue, int diff)
{
    // If lazy value is non-zero for current node of segment
    // tree, then there are some pending updates. So we need
    // to make sure that the pending updates are done before
    // making new updates. Because this value may be used by
    // parent after recursive calls (See last line of this
    // function)
    if (lazy[si] != 0)
    {
        // Make pending updates using value stored in lazy
        // nodes
        tree[si] += (se-ss+1)*lazy[si];
  
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (ss != se)
        {
            // We can postpone updating children we don't
            // need their new values now.
            // Since we are not yet updating children of si,
            // we need to set lazy flags for the children
            lazy[si*2 + 1]   += lazy[si];
            lazy[si*2 + 2]   += lazy[si];
        }
  
        // Set the lazy value for current node as 0 as it
        // has been updated
        lazy[si] = 0;
    }
  
    // out of range
    if (ss>se || ss>ue || se=us && se<=ue)
    {
        // Add the difference to current node
        tree[si] += (se-ss+1)*diff;
  
        // same logic for checking leaf node or not
        if (ss != se)
        {
            // This is where we store values in lazy nodes,
            // rather than updating the segment tree itelf
            // Since we don't need these updated values now
            // we postpone updates by storing values in lazy[]
            lazy[si*2 + 1]   += diff;
            lazy[si*2 + 2]   += diff;
        }
        return;
    }
  
    // If not completely in rang, but overlaps, recur for
    // children,
    int mid = (ss+se)/2;
    updateRangeUtil(si*2+1, ss, mid, us, ue, diff);
    updateRangeUtil(si*2+2, mid+1, se, us, ue, diff);
  
    // And use the result of children calls to update this
    // node
    tree[si] = tree[si*2+1] + tree[si*2+2];
}
  
// Function to update a range of values in segment
// tree
/*  us and eu -> starting and ending indexes of update query
    ue  -> ending index of update query
    diff -> which we need to add in the range us to ue */
void updateRange(int n, int us, int ue, int diff)
{
   updateRangeUtil(0, 0, n-1, us, ue, diff);
}
  
  
/*  A recursive function to get the sum of values in given
    range of the array. The following are parameters for
    this function.
    si --> Index of current node in the segment tree.
           Initially 0 is passed as root is always at'
           index 0
    ss & se  --> Starting and ending indexes of the
                 segment represented by current node,
                 i.e., tree[si]
    qs & qe  --> Starting and ending indexes of query
                 range */
int getSumUtil(int ss, int se, int qs, int qe, int si)
{
    // If lazy flag is set for current node of segment tree,
    // then there are some pending updates. So we need to
    // make sure that the pending updates are done before
    // processing the sub sum query
    if (lazy[si] != 0)
    {
        // Make pending updates to this node. Note that this
        // node represents sum of elements in arr[ss..se] and
        // all these elements must be increased by lazy[si]
        tree[si] += (se-ss+1)*lazy[si];
  
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (ss != se)
        {
            // Since we are not yet updating children os si,
            // we need to set lazy values for the children
            lazy[si*2+1] += lazy[si];
            lazy[si*2+2] += lazy[si];
        }
  
        // unset the lazy value for current node as it has
        // been updated
        lazy[si] = 0;
    }
  
    // Out of range
    if (ss>se || ss>qe || se=qs && se<=qe)
        return tree[si];
  
    // If a part of this segment overlaps with the given
    // range
    int mid = (ss + se)/2;
    return getSumUtil(ss, mid, qs, qe, 2*si+1) +
           getSumUtil(mid+1, se, qs, qe, 2*si+2);
}
  
// Return sum of elements in range from index qs (query
// start) to qe (query end).  It mainly uses getSumUtil()
int getSum(int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        printf("Invalid Input");
        return -1;
    }
  
    return getSumUtil(0, n-1, qs, qe, 0);
}
  
// A recursive function that constructs Segment Tree for
//  array[ss..se]. si is index of current node in segment
// tree st.
void constructSTUtil(int arr[], int ss, int se, int si)
{
    // out of range as ss can never be greater than se
    if (ss > se)
        return ;
  
    // If there is one element in array, store it in
    // current node of segment tree and return
    if (ss == se)
    {
        tree[si] = arr[ss];
        return;
    }
  
    // If there are more than one elements, then recur
    // for left and right subtrees and store the sum
    // of values in this node
    int mid = (ss + se)/2;
    constructSTUtil(arr, ss, mid, si*2+1);
    constructSTUtil(arr, mid+1, se, si*2+2);
  
    tree[si] = tree[si*2 + 1] + tree[si*2 + 2];
}
  
/* Function to construct segment tree from given array.
   This function allocates memory for segment tree and
   calls constructSTUtil() to fill the allocated memory */
void constructST(int arr[], int n)
{
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, 0);
}
  
  
// Driver program to test above functions
int main()
{
    int arr[] = {1, 3, 5, 7, 9, 11};
    int n = sizeof(arr)/sizeof(arr[0]);
  
    // Build segment tree from given array
    constructST(arr, n);
  
    // Print sum of values in array from index 1 to 3
    printf("Sum of values in given range = %d\n",
           getSum(n, 1, 3));
  
    // Add 10 to all nodes at indexes from 1 to 5.
    updateRange(n, 1, 5, 10);
  
    // Find sum after the value is updated
    printf("Updated sum of values in given range = %d\n",
            getSum( n, 1, 3));
  
    return 0;
}


Java
// Java program to demonstrate lazy propagation in segment tree
class LazySegmentTree
{
    final int MAX = 1000;        // Max tree size
    int tree[] = new int[MAX];  // To store segment tree
    int lazy[] = new int[MAX];  // To store pending updates
  
    /*  si -> index of current node in segment tree
        ss and se -> Starting and ending indexes of elements for
                     which current nodes stores sum.
        us and eu -> starting and ending indexes of update query
        ue  -> ending index of update query
        diff -> which we need to add in the range us to ue */
    void updateRangeUtil(int si, int ss, int se, int us,
                         int ue, int diff)
    {
        // If lazy value is non-zero for current node of segment
        // tree, then there are some pending updates. So we need
        // to make sure that the pending updates are done before
        // making new updates. Because this value may be used by
        // parent after recursive calls (See last line of this
        // function)
        if (lazy[si] != 0)
        {
            // Make pending updates using value stored in lazy
            // nodes
            tree[si] += (se - ss + 1) * lazy[si];
  
            // checking if it is not leaf node because if
            // it is leaf node then we cannot go further
            if (ss != se)
            {
                // We can postpone updating children we don't
                // need their new values now.
                // Since we are not yet updating children of si,
                // we need to set lazy flags for the children
                lazy[si * 2 + 1] += lazy[si];
                lazy[si * 2 + 2] += lazy[si];
            }
  
            // Set the lazy value for current node as 0 as it
            // has been updated
            lazy[si] = 0;
        }
  
        // out of range
        if (ss > se || ss > ue || se < us)
            return;
  
        // Current segment is fully in range
        if (ss >= us && se <= ue)
        {
            // Add the difference to current node
            tree[si] += (se - ss + 1) * diff;
  
            // same logic for checking leaf node or not
            if (ss != se)
            {
                // This is where we store values in lazy nodes,
                // rather than updating the segment tree itelf
                // Since we don't need these updated values now
                // we postpone updates by storing values in lazy[]
                lazy[si * 2 + 1] += diff;
                lazy[si * 2 + 2] += diff;
            }
            return;
        }
  
        // If not completely in rang, but overlaps, recur for
        // children,
        int mid = (ss + se) / 2;
        updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff);
        updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff);
  
        // And use the result of children calls to update this
        // node
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
    }
  
    // Function to update a range of values in segment
    // tree
    /*  us and eu -> starting and ending indexes of update query
        ue  -> ending index of update query
        diff -> which we need to add in the range us to ue */
    void updateRange(int n, int us, int ue, int diff)  {
        updateRangeUtil(0, 0, n - 1, us, ue, diff);
    }
  
    /*  A recursive function to get the sum of values in given
        range of the array. The following are parameters for
        this function.
        si --> Index of current node in the segment tree.
               Initially 0 is passed as root is always at'
               index 0
        ss & se  --> Starting and ending indexes of the
                     segment represented by current node,
                     i.e., tree[si]
        qs & qe  --> Starting and ending indexes of query
                     range */
    int getSumUtil(int ss, int se, int qs, int qe, int si)
    {
        // If lazy flag is set for current node of segment tree,
        // then there are some pending updates. So we need to
        // make sure that the pending updates are done before
        // processing the sub sum query
        if (lazy[si] != 0)
        {
            // Make pending updates to this node. Note that this
            // node represents sum of elements in arr[ss..se] and
            // all these elements must be increased by lazy[si]
            tree[si] += (se - ss + 1) * lazy[si];
  
            // checking if it is not leaf node because if
            // it is leaf node then we cannot go further
            if (ss != se)
            {
                // Since we are not yet updating children os si,
                // we need to set lazy values for the children
                lazy[si * 2 + 1] += lazy[si];
                lazy[si * 2 + 2] += lazy[si];
            }
  
            // unset the lazy value for current node as it has
            // been updated
            lazy[si] = 0;
        }
  
        // Out of range
        if (ss > se || ss > qe || se < qs)
            return 0;
  
        // At this point sure, pending lazy updates are done
        // for current node. So we can return value (same as
        // was for query in our previous post)
  
        // If this segment lies in range
        if (ss >= qs && se <= qe)
            return tree[si];
  
        // If a part of this segment overlaps with the given
        // range
        int mid = (ss + se) / 2;
        return getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
               getSumUtil(mid + 1, se, qs, qe, 2 * si + 2);
    }
  
    // Return sum of elements in range from index qs (query
    // start) to qe (query end).  It mainly uses getSumUtil()
    int getSum(int n, int qs, int qe)
    {
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            System.out.println("Invalid Input");
            return -1;
        }
  
        return getSumUtil(0, n - 1, qs, qe, 0);
    }
  
    /* A recursive function that constructs Segment Tree for
      array[ss..se]. si is index of current node in segment
      tree st. */
    void constructSTUtil(int arr[], int ss, int se, int si)
    {
        // out of range as ss can never be greater than se
        if (ss > se)
            return;
  
        /* If there is one element in array, store it in
         current node of segment tree and return */
        if (ss == se)
        {
            tree[si] = arr[ss];
            return;
        }
  
        /* If there are more than one elements, then recur
           for left and right subtrees and store the sum
           of values in this node */
        int mid = (ss + se) / 2;
        constructSTUtil(arr, ss, mid, si * 2 + 1);
        constructSTUtil(arr, mid + 1, se, si * 2 + 2);
  
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2];
    }
  
    /* Function to construct segment tree from given array.
       This function allocates memory for segment tree and
       calls constructSTUtil() to fill the allocated memory */
    void constructST(int arr[], int n)
    {
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, 0);
    }
  
  
    // Driver program to test above functions
    public static void main(String args[])
    {
        int arr[] = {1, 3, 5, 7, 9, 11};
        int n = arr.length;
        LazySegmentTree tree = new LazySegmentTree();
  
        // Build segment tree from given array
        tree.constructST(arr, n);
  
        // Print sum of values in array from index 1 to 3
        System.out.println("Sum of values in given range = " +
                           tree.getSum(n, 1, 3));
  
        // Add 10 to all nodes at indexes from 1 to 5.
        tree.updateRange(n, 1, 5, 10);
  
        // Find sum after the value is updated
        System.out.println("Updated sum of values in given range = " +
                           tree.getSum(n, 1, 3));
    }
}
// This Code is contributed by Ankur Narain Verma


Python3
# Python3 implementation of the approach 
MAX = 1000
  
# Ideally, we should not use global variables 
# and large constant-sized arrays, we have 
# done it here for simplicity. 
tree = [0] * MAX; # To store segment tree 
lazy = [0] * MAX; # To store pending updates 
  
""" si -> index of current node in segment tree 
    ss and se -> Starting and ending indexes of elements 
                 for which current nodes stores sum. 
    us and ue -> starting and ending indexes of update query 
    diff -> which we need to add in the range us to ue """
def updateRangeUtil(si, ss, se, us, ue, diff) : 
  
    # If lazy value is non-zero for current node
    # of segment tree, then there are some 
    # pending updates. So we need to make sure 
    # that the pending updates are done before 
    # making new updates. Because this value may be 
    # used by parent after recursive calls 
    # (See last line of this function) 
    if (lazy[si] != 0) :
          
        # Make pending updates using value 
        # stored in lazy nodes 
        tree[si] += (se - ss + 1) * lazy[si]; 
  
        # checking if it is not leaf node because if 
        # it is leaf node then we cannot go further 
        if (ss != se) :
          
            # We can postpone updating children we don't 
            # need their new values now. 
            # Since we are not yet updating children of si, 
            # we need to set lazy flags for the children 
            lazy[si * 2 + 1] += lazy[si]; 
            lazy[si * 2 + 2] += lazy[si]; 
          
        # Set the lazy value for current node 
        # as 0 as it has been updated 
        lazy[si] = 0; 
      
    # out of range 
    if (ss > se or ss > ue or se < us) :
        return ; 
  
    # Current segment is fully in range 
    if (ss >= us and se <= ue) :
          
        # Add the difference to current node 
        tree[si] += (se - ss + 1) * diff; 
  
        # same logic for checking leaf node or not 
        if (ss != se) :
          
            # This is where we store values in lazy nodes, 
            # rather than updating the segment tree itelf 
            # Since we don't need these updated values now 
            # we postpone updates by storing values in lazy[] 
            lazy[si * 2 + 1] += diff; 
            lazy[si * 2 + 2] += diff; 
          
        return; 
  
    # If not completely in rang, but overlaps, 
    # recur for children, 
    mid = (ss + se) // 2; 
    updateRangeUtil(si * 2 + 1, ss,
                    mid, us, ue, diff); 
    updateRangeUtil(si * 2 + 2, mid + 1, 
                    se, us, ue, diff); 
  
    # And use the result of children calls 
    # to update this node 
    tree[si] = tree[si * 2 + 1] + \
               tree[si * 2 + 2]; 
  
# Function to update a range of values 
# in segment tree 
  
''' us and eu -> starting and ending indexes 
                 of update query 
    ue -> ending index of update query 
    diff -> which we need to add in the range us to ue '''
def updateRange(n, us, ue, diff) :
    updateRangeUtil(0, 0, n - 1, us, ue, diff); 
  
''' A recursive function to get the sum of values 
    in given range of the array. The following are 
    parameters for this function. 
    si --> Index of current node in the segment tree. 
        Initially 0 is passed as root is always at' 
        index 0 
    ss & se --> Starting and ending indexes of the 
                segment represented by current node, 
                i.e., tree[si] 
    qs & qe --> Starting and ending indexes of query 
                range '''
def getSumUtil(ss, se, qs, qe, si) : 
  
    # If lazy flag is set for current node 
    # of segment tree, then there are 
    # some pending updates. So we need to 
    # make sure that the pending updates are  
    # done before processing the sub sum query 
    if (lazy[si] != 0) :
      
        # Make pending updates to this node.  
        # Note that this node represents sum of 
        # elements in arr[ss..se] and all these 
        # elements must be increased by lazy[si] 
        tree[si] += (se - ss + 1) * lazy[si]; 
  
        # checking if it is not leaf node because if 
        # it is leaf node then we cannot go further 
        if (ss != se) :
          
            # Since we are not yet updating children os si, 
            # we need to set lazy values for the children 
            lazy[si * 2 + 1] += lazy[si]; 
            lazy[si * 2 + 2] += lazy[si]; 
  
        # unset the lazy value for current node 
        # as it has been updated 
        lazy[si] = 0; 
  
    # Out of range 
    if (ss > se or ss > qe or se < qs) :
        return 0; 
  
    # At this point we are sure that  
    # pending lazy updates are done for  
    # current node. So we can return value
    # (same as it was for query in our previous post) 
  
    # If this segment lies in range 
    if (ss >= qs and se <= qe) :
        return tree[si]; 
  
    # If a part of this segment overlaps 
    # with the given range 
    mid = (ss + se) // 2; 
    return (getSumUtil(ss, mid, qs, qe, 2 * si + 1) +
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2)); 
  
# Return sum of elements in range from 
# index qs (query start) to qe (query end). 
# It mainly uses getSumUtil() 
def getSum(n, qs, qe) :
      
    # Check for erroneous input values 
    if (qs < 0 or qe > n - 1 or qs > qe) :
        print("Invalid Input"); 
        return -1; 
  
    return getSumUtil(0, n - 1, qs, qe, 0); 
  
# A recursive function that constructs 
# Segment Tree for array[ss..se]. 
# si is index of current node in segment 
# tree st. 
def constructSTUtil(arr, ss, se, si) : 
  
    # out of range as ss can never be
    # greater than se 
    if (ss > se) :
        return ; 
  
    # If there is one element in array, 
    # store it in current node of 
    # segment tree and return 
    if (ss == se) :
      
        tree[si] = arr[ss]; 
        return; 
      
    # If there are more than one elements, 
    # then recur for left and right subtrees 
    # and store the sum of values in this node 
    mid = (ss + se) // 2; 
    constructSTUtil(arr, ss, mid, si * 2 + 1); 
    constructSTUtil(arr, mid + 1, se, si * 2 + 2); 
  
    tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
  
''' Function to construct segment tree 
from given array. This function allocates memory 
for segment tree and calls constructSTUtil() 
to fill the allocated memory '''
def constructST(arr, n) : 
      
    # Fill the allocated memory st 
    constructSTUtil(arr, 0, n - 1, 0); 
      
# Driver Code
if __name__ == "__main__" : 
  
    arr = [1, 3, 5, 7, 9, 11]; 
    n = len(arr); 
  
    # Build segment tree from given array 
    constructST(arr, n); 
  
    # Print sum of values in array from index 1 to 3 
    print("Sum of values in given range =",
                          getSum(n, 1, 3)); 
  
    # Add 10 to all nodes at indexes from 1 to 5. 
    updateRange(n, 1, 5, 10); 
  
    # Find sum after the value is updated 
    print("Updated sum of values in given range =",
                                 getSum( n, 1, 3)); 
  
# This code is contributed by AnkitRai01


C#
// C# program to demonstrate lazy
// propagation in segment tree 
using System;
  
public class LazySegmentTree 
{ 
    static readonly int MAX = 1000; // Max tree size 
    int []tree = new int[MAX]; // To store segment tree 
    int []lazy = new int[MAX]; // To store pending updates 
  
    /* si -> index of current node in segment tree 
        ss and se -> Starting and ending indexes of elements for 
                    which current nodes stores sum. 
        us and eu -> starting and ending indexes of update query 
        ue -> ending index of update query 
        diff -> which we need to add in the range us to ue */
    void updateRangeUtil(int si, int ss, int se, int us, 
                        int ue, int diff) 
    { 
        // If lazy value is non-zero 
        // for current node of segment 
        // tree, then there are some 
        // pending updates. So we need 
        // to make sure that the pending
        // updates are done before making
        // new updates. Because this 
        // value may be used by parent
        // after recursive calls (See last 
        // line of this function) 
        if (lazy[si] != 0) 
        { 
            // Make pending updates using value 
            // stored in lazy nodes 
            tree[si] += (se - ss + 1) * lazy[si]; 
  
            // checking if it is not leaf node because if 
            // it is leaf node then we cannot go further 
            if (ss != se) 
            { 
                // We can postpone updating children 
                //  we don't need their new values now. 
                // Since we are not yet updating children of si, 
                // we need to set lazy flags for the children 
                lazy[si * 2 + 1] += lazy[si]; 
                lazy[si * 2 + 2] += lazy[si]; 
            } 
  
            // Set the lazy value for current node 
            // as 0 as it has been updated 
            lazy[si] = 0; 
        } 
  
        // out of range 
        if (ss > se || ss > ue || se < us) 
            return; 
  
        // Current segment is fully in range 
        if (ss >= us && se <= ue) 
        { 
            // Add the difference to current node 
            tree[si] += (se - ss + 1) * diff; 
  
            // same logic for checking leaf node or not 
            if (ss != se) 
            { 
                // This is where we store values in lazy nodes, 
                // rather than updating the segment tree itelf 
                // Since we don't need these updated values now 
                // we postpone updates by storing values in lazy[] 
                lazy[si * 2 + 1] += diff; 
                lazy[si * 2 + 2] += diff; 
            } 
            return; 
        } 
  
        // If not completely in rang, but 
        // overlaps, recur for children, 
        int mid = (ss + se) / 2; 
        updateRangeUtil(si * 2 + 1, ss, mid, us, ue, diff); 
        updateRangeUtil(si * 2 + 2, mid + 1, se, us, ue, diff); 
  
        // And use the result of children calls to update this 
        // node 
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
    } 
  
    // Function to update a range of values in segment 
    // tree 
    /* us and eu -> starting and ending indexes of update query 
        ue -> ending index of update query 
        diff -> which we need to add in the range us to ue */
    void updateRange(int n, int us, int ue, int diff)
    { 
        updateRangeUtil(0, 0, n - 1, us, ue, diff); 
    } 
  
    /* A recursive function to get the sum of values in given 
        range of the array. The following are parameters for 
        this function. 
        si --> Index of current node in the segment tree. 
            Initially 0 is passed as root is always at' 
            index 0 
        ss & se --> Starting and ending indexes of the 
                    segment represented by current node, 
                    i.e., tree[si] 
        qs & qe --> Starting and ending indexes of query 
                    range */
    int getSumUtil(int ss, int se, int qs,
                            int qe, int si) 
    { 
        // If lazy flag is set for current node
        // of segment tree, then there are
        // some pending updates. So we need to 
        // make sure that the pending updates
        // are done before processing
        // the sub sum query 
        if (lazy[si] != 0) 
        { 
            // Make pending updates to this 
            // node. Note that this node 
            // represents sum of elements
            // in arr[ss..se] and all these
            // elements must be increased by lazy[si] 
            tree[si] += (se - ss + 1) * lazy[si]; 
  
            // checking if it is not leaf node because if 
            // it is leaf node then we cannot go further 
            if (ss != se) 
            { 
                // Since we are not yet 
                // updating children os si, 
                // we need to set lazy values
                // for the children 
                lazy[si * 2 + 1] += lazy[si]; 
                lazy[si * 2 + 2] += lazy[si]; 
            } 
  
            // unset the lazy value for current 
            // node as it has been updated 
            lazy[si] = 0; 
        } 
  
        // Out of range 
        if (ss > se || ss > qe || se < qs) 
            return 0; 
  
        // At this point sure, pending lazy updates are done 
        // for current node. So we can return value (same as 
        // was for query in our previous post) 
  
        // If this segment lies in range 
        if (ss >= qs && se <= qe) 
            return tree[si]; 
  
        // If a part of this segment overlaps 
        // with the given range 
        int mid = (ss + se) / 2; 
        return getSumUtil(ss, mid, qs, qe, 2 * si + 1) + 
            getSumUtil(mid + 1, se, qs, qe, 2 * si + 2); 
    } 
  
    // Return sum of elements in range from index qs (query 
    // start) to qe (query end). It mainly uses getSumUtil() 
    int getSum(int n, int qs, int qe) 
    { 
        // Check for erroneous input values 
        if (qs < 0 || qe > n - 1 || qs > qe) 
        { 
            Console.WriteLine("Invalid Input"); 
            return -1; 
        } 
  
        return getSumUtil(0, n - 1, qs, qe, 0); 
    } 
  
    /* A recursive function that constructs
    Segment Tree for array[ss..se]. si is 
    index of current node in segment 
    tree st. */
    void constructSTUtil(int []arr, int ss, int se, int si) 
    { 
        // out of range as ss can 
        // never be greater than se 
        if (ss > se) 
            return; 
  
        /* If there is one element in array, store it in 
        current node of segment tree and return */
        if (ss == se) 
        { 
            tree[si] = arr[ss]; 
            return; 
        } 
  
        /* If there are more than one elements, then recur 
        for left and right subtrees and store the sum 
        of values in this node */
        int mid = (ss + se) / 2; 
        constructSTUtil(arr, ss, mid, si * 2 + 1); 
        constructSTUtil(arr, mid + 1, se, si * 2 + 2); 
  
        tree[si] = tree[si * 2 + 1] + tree[si * 2 + 2]; 
    } 
  
    /* Function to construct segment tree from given array. 
    This function allocates memory for segment tree and 
    calls constructSTUtil() to fill the allocated memory */
    void constructST(int []arr, int n) 
    { 
        // Fill the allocated memory st 
        constructSTUtil(arr, 0, n - 1, 0); 
    } 
  
  
    // Driver program to test above functions 
    public static void Main(String []args) 
    { 
        int []arr = {1, 3, 5, 7, 9, 11}; 
        int n = arr.Length; 
        LazySegmentTree tree = new LazySegmentTree(); 
  
        // Build segment tree from given array 
        tree.constructST(arr, n); 
  
        // Print sum of values in array from index 1 to 3 
        Console.WriteLine("Sum of values in given range = " + 
                        tree.getSum(n, 1, 3)); 
  
        // Add 10 to all nodes at indexes from 1 to 5. 
        tree.updateRange(n, 1, 5, 10); 
  
        // Find sum after the value is updated 
        Console.WriteLine("Updated sum of values in given range = " + 
                        tree.getSum(n, 1, 3)); 
    } 
} 
  
// This code contributed by Rajput-Ji


输出:

Sum of values in given range = 15
Updated sum of values in given range = 45