打印二叉树的所有内部节点
给定一棵二叉树,任务是打印树中的所有内部节点。
内部节点是至少携带一个孩子的节点,或者换句话说,内部节点不是叶子节点。在这里,我们打算按级别顺序打印所有此类内部节点。考虑以下二叉树:
Input:
Output: 15 10 20
解决这个问题的方法涉及树的 BFS。算法如下:
- 通过将队列中的节点一个一个推入来进行级别顺序遍历。
- 从队列中逐一弹出元素,并跟踪以下情况:
- 该节点只有一个左孩子。
- 该节点只有一个右孩子。
- 该节点同时具有左孩子和右孩子。
- 该节点根本没有孩子。
- 除案例 4 外,打印所有其他 3 个案例的节点中的数据。
下面是上述方法的实现:
C++
// C++ program to print all internal
// nodes in tree
#include
using namespace std;
// A node in the Binary tree
struct Node {
int data;
Node *left, *right;
Node(int data)
{
left = right = NULL;
this->data = data;
}
};
// Function to print all internal nodes
// in level order from left to right
void printInternalNodes(Node* root)
{
// Using a queue for a level order traversal
queue q;
q.push(root);
while (!q.empty()) {
// Check and pop the element in
// the front of the queue
Node* curr = q.front();
q.pop();
// The variable flag keeps track of
// whether a node is an internal node
bool isInternal = 0;
// The node has a left child
if (curr->left) {
isInternal = 1;
q.push(curr->left);
}
// The node has a right child
if (curr->right) {
isInternal = 1;
q.push(curr->right);
}
// In case the node has either a left
// or right child or both print the data
if (isInternal)
cout << curr->data << " ";
}
}
// Driver program to build a sample tree
int main()
{
Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->right->left = new Node(5);
root->right->right = new Node(6);
root->right->right->right = new Node(10);
root->right->right->left = new Node(7);
root->right->left->left = new Node(8);
root->right->left->right = new Node(9);
// A call to the function
printInternalNodes(root);
return 0;
}
Java
// Java program to print all internal
// nodes in tree
import java.util.*;
class GfG
{
// A node in the Binary tree
static class Node
{
int data;
Node left, right;
Node(int data)
{
left = right = null;
this.data = data;
}
}
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
// Using a queue for a level order traversal
Queue q = new LinkedList();
q.add(root);
while (!q.isEmpty())
{
// Check and pop the element in
// the front of the queue
Node curr = q.peek();
q.remove();
// The variable flag keeps track of
// whether a node is an internal node
boolean isInternal = false;
// The node has a left child
if (curr.left != null)
{
isInternal = true;
q.add(curr.left);
}
// The node has a right child
if (curr.right != null)
{
isInternal = true;
q.add(curr.right);
}
// In case the node has either a left
// or right child or both print the data
if (isInternal == true)
System.out.print(curr.data + " ");
}
}
// Driver code
public static void main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.right.left = new Node(5);
root.right.right = new Node(6);
root.right.right.right = new Node(10);
root.right.right.left = new Node(7);
root.right.left.left = new Node(8);
root.right.left.right = new Node(9);
// A call to the function
printInternalNodes(root);
}
}
// This code is contributed by
// Prerna Saini.
Python3
# Python3 program to print all internal
# nodes in tree
# A node in the Binary tree
class new_Node:
# Constructor to create a new_Node
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Function to print all internal nodes
# in level order from left to right
def printInternalNodes(root):
# Using a queue for a level order traversal
q = []
q.append(root)
while (len(q)):
# Check and pop the element in
# the front of the queue
curr = q[0]
q.pop(0)
# The variable flag keeps track of
# whether a node is an internal node
isInternal = 0
# The node has a left child
if (curr.left):
isInternal = 1
q.append(curr.left)
# The node has a right child
if (curr.right):
isInternal = 1
q.append(curr.right)
# In case the node has either a left
# or right child or both print the data
if (isInternal):
print(curr.data, end = " ")
# Driver Code
root = new_Node(1)
root.left = new_Node(2)
root.right = new_Node(3)
root.left.left = new_Node(4)
root.right.left = new_Node(5)
root.right.right = new_Node(6)
root.right.right.right = new_Node(10)
root.right.right.left = new_Node(7)
root.right.left.left = new_Node(8)
root.right.left.right = new_Node(9)
# A call to the function
printInternalNodes(root)
# This code is contributed by SHUBHAMSINGH10
C#
// C# program to print all internal
// nodes in tree
using System;
using System.Collections.Generic;
class GFG
{
// A node in the Binary tree
public class Node
{
public int data;
public Node left, right;
public Node(int data)
{
left = right = null;
this.data = data;
}
}
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
// Using a queue for a level order traversal
Queue q = new Queue();
q.Enqueue(root);
while (q.Count != 0)
{
// Check and pop the element in
// the front of the queue
Node curr = q.Peek();
q.Dequeue();
// The variable flag keeps track of
// whether a node is an internal node
Boolean isInternal = false;
// The node has a left child
if (curr.left != null)
{
isInternal = true;
q.Enqueue(curr.left);
}
// The node has a right child
if (curr.right != null)
{
isInternal = true;
q.Enqueue(curr.right);
}
// In case the node has either a left
// or right child or both print the data
if (isInternal == true)
Console.Write(curr.data + " ");
}
}
// Driver code
public static void Main(String[] args)
{
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.right.left = new Node(5);
root.right.right = new Node(6);
root.right.right.right = new Node(10);
root.right.right.left = new Node(7);
root.right.left.left = new Node(8);
root.right.left.right = new Node(9);
// A call to the function
printInternalNodes(root);
}
}
// This code contributed by Rajput-Ji
Javascript
输出:
1 2 3 5 6