📌  相关文章
📜  打印二叉树的所有内部节点

📅  最后修改于: 2022-05-13 01:57:16.408000             🧑  作者: Mango

打印二叉树的所有内部节点

给定一棵二叉树,任务是打印树中的所有内部节点。
内部节点是至少携带一个孩子的节点,或者换句话说,内部节点不是叶子节点。在这里,我们打算按级别顺序打印所有此类内部节点。考虑以下二叉树:

解决这个问题的方法涉及树的 BFS。算法如下:

  • 通过将队列中的节点一个一个推入来进行级别顺序遍历。
  • 从队列中逐一弹出元素,并跟踪以下情况:
    1. 该节点只有一个左孩子。
    2. 该节点只有一个右孩子。
    3. 该节点同时具有左孩子和右孩子。
    4. 该节点根本没有孩子。
  • 除案例 4 外,打印所有其他 3 个案例的节点中的数据。

下面是上述方法的实现:

C++
// C++ program to print all internal
// nodes in tree
#include 
using namespace std;
 
// A node in the Binary tree
struct Node {
    int data;
    Node *left, *right;
    Node(int data)
    {
       left = right = NULL;
       this->data = data;
    }
};
 
// Function to print all internal nodes
// in level order from left to right
void printInternalNodes(Node* root)
{
    // Using a queue for a level order traversal
    queue q;
    q.push(root);
    while (!q.empty()) {
 
        // Check and pop the element in
        // the front of the queue
        Node* curr = q.front();
        q.pop();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        bool isInternal = 0;
 
        // The node has a left child
        if (curr->left) {
            isInternal = 1;
            q.push(curr->left);
        }
 
        // The node has a right child
        if (curr->right) {
            isInternal = 1;
            q.push(curr->right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal)
            cout << curr->data << " ";
    }
}
 
// Driver program to build a sample tree
int main()
{
    Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->right->left = new Node(5);
    root->right->right = new Node(6);
    root->right->right->right = new Node(10);
    root->right->right->left = new Node(7);
    root->right->left->left = new Node(8);
    root->right->left->right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
 
    return 0;
}


Java
// Java program to print all internal
// nodes in tree
import java.util.*;
class GfG
{
 
// A node in the Binary tree
static class Node
{
    int data;
    Node left, right;
    Node(int data)
    {
        left = right = null;
        this.data = data;
    }
}
 
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
    // Using a queue for a level order traversal
    Queue q = new LinkedList();
    q.add(root);
    while (!q.isEmpty())
    {
 
        // Check and pop the element in
        // the front of the queue
        Node curr = q.peek();
        q.remove();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        boolean isInternal = false;
 
        // The node has a left child
        if (curr.left != null)
        {
            isInternal = true;
            q.add(curr.left);
        }
 
        // The node has a right child
        if (curr.right != null)
        {
            isInternal = true;
            q.add(curr.right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal == true)
            System.out.print(curr.data + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.right.left = new Node(5);
    root.right.right = new Node(6);
    root.right.right.right = new Node(10);
    root.right.right.left = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
}
}
 
// This code is contributed by
// Prerna Saini.


Python3
# Python3 program to print all internal
# nodes in tree
 
# A node in the Binary tree
class new_Node:
     
    # Constructor to create a new_Node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
     
# Function to print all internal nodes
# in level order from left to right
def printInternalNodes(root):
     
    # Using a queue for a level order traversal
    q = []
    q.append(root)
    while (len(q)):
         
        # Check and pop the element in
        # the front of the queue
        curr = q[0]
        q.pop(0)
         
        # The variable flag keeps track of
        # whether a node is an internal node
        isInternal = 0
         
        # The node has a left child
        if (curr.left):
            isInternal = 1
            q.append(curr.left)
         
        # The node has a right child
        if (curr.right):
            isInternal = 1
            q.append(curr.right)
         
        # In case the node has either a left
        # or right child or both print the data
        if (isInternal):
            print(curr.data, end = " ")
     
# Driver Code
root = new_Node(1)
root.left = new_Node(2)
root.right = new_Node(3)
root.left.left = new_Node(4)
root.right.left = new_Node(5)
root.right.right = new_Node(6)
root.right.right.right = new_Node(10)
root.right.right.left = new_Node(7)
root.right.left.left = new_Node(8)
root.right.left.right = new_Node(9)
 
# A call to the function
printInternalNodes(root)
 
# This code is contributed by SHUBHAMSINGH10


C#
// C# program to print all internal
// nodes in tree
using System;
using System.Collections.Generic;
 
class GFG
{
 
// A node in the Binary tree
public class Node
{
    public int data;
    public Node left, right;
    public Node(int data)
    {
        left = right = null;
        this.data = data;
    }
}
 
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
    // Using a queue for a level order traversal
    Queue q = new Queue();
    q.Enqueue(root);
    while (q.Count != 0)
    {
 
        // Check and pop the element in
        // the front of the queue
        Node curr = q.Peek();
        q.Dequeue();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        Boolean isInternal = false;
 
        // The node has a left child
        if (curr.left != null)
        {
            isInternal = true;
            q.Enqueue(curr.left);
        }
 
        // The node has a right child
        if (curr.right != null)
        {
            isInternal = true;
            q.Enqueue(curr.right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal == true)
            Console.Write(curr.data + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.right.left = new Node(5);
    root.right.right = new Node(6);
    root.right.right.right = new Node(10);
    root.right.right.left = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
}
}
 
// This code contributed by Rajput-Ji


Javascript


输出:
1 2 3 5 6