Python中的 numpy.place()
numpy.place()方法根据参数 - 条件和值对数组进行更改(根据用户设置的掩码,使用前 N 个值放入数组中)。它与 numpy.extract() 相反。
句法:
numpy.place(array, mask, vals)
参数 :
array : [ndarray] Input array, we need to make changes into
mask : [array_like]Boolean that must have same size as that of the input array
value : Values to put into the array. Based on the mask condition it adds only N-elements
to the array. If in case values in val are smaller than the mask, same values get repeated.
返回 :
Array with change elements i.e. new elements being put
Python
# Python Program illustrating
# numpy.place() method
import numpy as geek
array = geek.arange(12).reshape(3, 4)
print("Original array : \n", array)
# Putting new elements
a = geek.place(array, array > 5, [15, 25, 35])
print("\nPutting up elements to array: \n", array)
array1 = geek.arange(6).reshape(2, 3)
print("\n\nOriginal array1 : \n", array)
# Putting new elements
a = geek.place(array1, array1>2, [44, 55])
print("\nPutting new elements to array1 : \n", array1)
输出 :
Original array :
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
Putting up elements to array:
[[ 0 1 2 3]
[ 4 5 15 25]
[35 15 25 35]]
Original array1 :
[[ 0 1 2 3]
[ 4 5 15 25]
[35 15 25 35]]
Putting new elements to array1 :
[[ 0 1 2]
[44 55 44]]
参考 :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.place.html#numpy.place
笔记 :
这些代码不会在在线 IDE 上运行。因此,请在您的系统上运行它们以探索其工作原理。