给定一系列矩阵,找到将这些矩阵相乘的最有效方法。问题实际上不是执行乘法,而是仅决定执行乘法的顺序。
因为矩阵乘法是关联的,所以我们有很多选择可以乘法矩阵链。换句话说,无论我们如何对产品加上括号,结果都是一样的。例如,如果我们有四个矩阵A,B,C和D,则将有:
(ABC)D = (AB)(CD) = A(BCD) = ....
但是,括号内乘积的顺序会影响计算乘积所需的简单算术运算的数量或效率。例如,假设A为10×30矩阵,B为30×5矩阵,C为5×60矩阵。然后,
(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.
显然,第一个括号需要较少的操作。
给定表示矩阵链的数组p [],使第i个矩阵Ai的尺寸为p [i-1] xp [i]。我们需要编写一个函数MatrixChainOrder(),该函数应返回乘法链所需的最小乘法数。
Input: p[] = {40, 20, 30, 10, 30}
Output: 26000
There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
Input: p[] = {10, 20, 30, 40, 30}
Output: 30000
There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30
Input: p[] = {10, 20, 30}
Output: 6000
There are only two matrices of dimensions 10x20 and 20x30. So there
is only one way to multiply the matrices, cost of which is 10*20*30
1)最佳子结构:
一个简单的解决方案是将括号放在所有可能的位置,计算每次放置的费用并返回最小值。在大小为n的矩阵链中,我们可以以n-1的方式放置第一组括号。例如,如果给定链为4个矩阵。假设链为ABCD,则有3种方式放置第一组括号外侧:(A)(BCD),(AB)(CD)和(ABC)(D)。因此,当我们放置一组括号时,会将问题分为较小的子问题。因此,该问题具有最佳的子结构属性,可以使用递归轻松解决。
乘以大小为n的链所需的最小乘数=所有n-1个展示位置的最小值(这些展示位置会创建较小尺寸的子问题)
2)重叠子问题
以下是简单地遵循上述最佳子结构属性的递归实现。
下面是上述想法的实现:
C++
/* A naive recursive implementation that simply
follows the above optimal substructure property */
#include
using namespace std;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
int MatrixChainOrder(int p[], int i, int j)
{
if (i == j)
return 0;
int k;
int min = INT_MAX;
int count;
// place parenthesis at different places
// between first and last matrix, recursively
// calculate count of multiplications for
// each parenthesis placement and return the
// minimum count
for (k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
// Return minimum count
return min;
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, 1, n - 1);
}
// This code is contributed by Shivi_Aggarwal
C
/* A naive recursive implementation that simply
follows the above optimal substructure property */
#include
#include
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChainOrder(int p[], int i, int j)
{
if (i == j)
return 0;
int k;
int min = INT_MAX;
int count;
// place parenthesis at different places between first
// and last matrix, recursively calculate count of
// multiplications for each parenthesis placement and
// return the minimum count
for (k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
// Return minimum count
return min;
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, 1, n - 1));
getchar();
return 0;
}
Java
/* A naive recursive implementation that simply follows
the above optimal substructure property */
class MatrixChainMultiplication {
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
static int MatrixChainOrder(int p[], int i, int j)
{
if (i == j)
return 0;
int min = Integer.MAX_VALUE;
// place parenthesis at different places between
// first and last matrix, recursively calculate
// count of multiplications for each parenthesis
// placement and return the minimum count
for (int k = i; k < j; k++)
{
int count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
// Return minimum count
return min;
}
// Driver code
public static void main(String args[])
{
int arr[] = new int[] { 1, 2, 3, 4, 3 };
int n = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, n - 1));
}
}
/* This code is contributed by Rajat Mishra*/
Python3
# A naive recursive implementation that
# simply follows the above optimal
# substructure property
import sys
# Matrix A[i] has dimension p[i-1] x p[i]
# for i = 1..n
def MatrixChainOrder(p, i, j):
if i == j:
return 0
_min = sys.maxsize
# place parenthesis at different places
# between first and last matrix,
# recursively calculate count of
# multiplications for each parenthesis
# placement and return the minimum count
for k in range(i, j):
count = (MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i-1] * p[k] * p[j])
if count < _min:
_min = count
# Return minimum count
return _min
# Driver code
arr = [1, 2, 3, 4, 3]
n = len(arr)
print("Minimum number of multiplications is ",
MatrixChainOrder(arr, 1, n-1))
# This code is contributed by Aryan Garg
C#
/* C# code for naive recursive implementation
that simply follows the above optimal
substructure property */
using System;
class GFG {
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
static int MatrixChainOrder(int[] p, int i, int j)
{
if (i == j)
return 0;
int min = int.MaxValue;
// place parenthesis at different places
// between first and last matrix, recursively
// calculate count of multiplications for each
// parenthesis placement and return the
// minimum count
for (int k = i; k < j; k++)
{
int count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if (count < min)
min = count;
}
// Return minimum count
return min;
}
// Driver code
public static void Main()
{
int[] arr = new int[] { 1, 2, 3, 4, 3 };
int n = arr.Length;
Console.Write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, n - 1));
}
}
// This code is contributed by Sam007.
PHP
Javascript
C++
// C++ program using memoization
#include
using namespace std;
int dp[100][100];
// Function for matrix chain multiplication
int matrixChainMemoised(int* p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = INT_MAX;
for (int k = i; k < j; k++)
{
dp[i][j] = min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
int MatrixChainOrder(int* p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
memset(dp, -1, sizeof dp);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, n);
}
// This code is contribted by Sumit_Yadav
Java
// Java program using memoization
import java.io.*;
import java.util.*;
class GFG
{
static int[][] dp = new int[100][100];
// Function for matrix chain multiplication
static int matrixChainMemoised(int[] p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = Integer.MAX_VALUE;
for (int k = i; k < j; k++)
{
dp[i][j] = Math.min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
static int MatrixChainOrder(int[] p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver Code
public static void main (String[] args)
{
int arr[] = { 1, 2, 3, 4 };
int n= arr.length;
for (int[] row : dp)
Arrays.fill(row, -1);
System.out.println("Minimum number of multiplications is " + MatrixChainOrder(arr, n));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python program using memoization
import sys
dp = [[-1 for i in range(100)] for j in range(100)]
# Function for matrix chain multiplication
def matrixChainMemoised(p, i, j):
if(i == j):
return 0
if(dp[i][j] != -1):
return dp[i][j]
dp[i][j] = sys.maxsize
for k in range(i,j):
dp[i][j] = min(dp[i][j], matrixChainMemoised(p, i, k) + matrixChainMemoised(p, k + 1, j)+ p[i - 1] * p[k] * p[j])
return dp[i][j]
def MatrixChainOrder(p,n):
i = 1
j = n - 1
return matrixChainMemoised(p, i, j)
# Driver Code
arr = [1, 2, 3, 4]
n = len(arr)
print("Minimum number of multiplications is",MatrixChainOrder(arr, n))
# This code is contributed by rag2127
C#
// C# program using memoization
using System;
class GFG
{
static int[,] dp = new int[100, 100];
// Function for matrix chain multiplication
static int matrixChainMemoised(int[] p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i, j] != -1)
{
return dp[i, j];
}
dp[i, j] = Int32.MaxValue;
for (int k = i; k < j; k++)
{
dp[i, j] = Math.Min(
dp[i, j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i,j];
}
static int MatrixChainOrder(int[] p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver code
static void Main()
{
int[] arr = { 1, 2, 3, 4 };
int n = arr.Length;
for(int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)
{
dp[i, j] = -1;
}
}
Console.WriteLine("Minimum number of multiplications is " +
MatrixChainOrder(arr, n));
}
}
// This code is contributed by divyeshrabadiya07.
C++
// See the Cormen book for details of the
// following algorithm
#include
using namespace std;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int m[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the
matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, size);
getchar();
return 0;
}
// This code is contributed
// by Akanksha Rai
C
// See the Cormen book for details of the following
// algorithm
#include
#include
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the program,
one extra row and one
extra column are allocated in m[][].
0th row and 0th
column of m[][] are not used */
int m[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of
scalar multiplications
needed to compute the matrix
A[i]A[i+1]...A[j] =
A[i..j] where dimension of A[i]
is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++) {
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof(arr) / sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, size));
getchar();
return 0;
}
Java
// Dynamic Programming Java implementation of Matrix
// Chain Multiplication.
// See the Cormen book for details of the following
// algorithm
class MatrixChainMultiplication
{
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
static int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the
program, one extra row and
one extra column are allocated in m[][]. 0th row
and 0th column of m[][] are not used */
int m[][] = new int[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the matrix
A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue;
m[i][j] = Integer.MAX_VALUE;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver code
public static void main(String args[])
{
int arr[] = new int[] { 1, 2, 3, 4 };
int size = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, size));
}
}
/* This code is contributed by Rajat Mishra*/
Python
# Dynamic Programming Python implementation of Matrix
# Chain Multiplication. See the Cormen book for details
# of the following algorithm
import sys
# Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
def MatrixChainOrder(p, n):
# For simplicity of the program,
# one extra row and one
# extra column are allocated in m[][].
# 0th row and 0th
# column of m[][] are not used
m = [[0 for x in range(n)] for x in range(n)]
# m[i, j] = Minimum number of scalar
# multiplications needed
# to compute the matrix A[i]A[i + 1]...A[j] =
# A[i..j] where
# dimension of A[i] is p[i-1] x p[i]
# cost is zero when multiplying one matrix.
for i in range(1, n):
m[i][i] = 0
# L is chain length.
for L in range(2, n):
for i in range(1, n-L + 1):
j = i + L-1
m[i][j] = sys.maxint
for k in range(i, j):
# q = cost / scalar multiplications
q = m[i][k] + m[k + 1][j] + p[i-1]*p[k]*p[j]
if q < m[i][j]:
m[i][j] = q
return m[1][n-1]
# Driver code
arr = [1, 2, 3, 4]
size = len(arr)
print("Minimum number of multiplications is " +
str(MatrixChainOrder(arr, size)))
# This Code is contributed by Bhavya Jain
C#
// Dynamic Programming C# implementation of
// Matrix Chain Multiplication.
// See the Cormen book for details of the
// following algorithm
using System;
class GFG
{
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
static int MatrixChainOrder(int[] p, int n)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int[, ] m = new int[n, n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed
to compute the matrix A[i]A[i+1]...A[j]
= A[i..j] where dimension of A[i] is
p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for (i = 1; i < n; i++)
m[i, i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue;
m[i, j] = int.MaxValue;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i, k] + m[k + 1, j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i, j])
m[i, j] = q;
}
}
}
return m[1, n - 1];
}
// Driver code
public static void Main()
{
int[] arr = new int[] { 1, 2, 3, 4 };
int size = arr.Length;
Console.Write("Minimum number of "
+ "multiplications is "
+ MatrixChainOrder(arr, size));
}
}
// This code is contributed by Sam007
PHP
Javascript
Minimum number of multiplications is 30
上述幼稚递归方法的时间复杂度是指数的。应该注意的是,上述函数一次又一次地计算相同的子问题。有关大小为4的矩阵链,请参见下面的递归树。函数MatrixChainOrder(p,3,4)被调用两次。我们可以看到,有许多子问题不止一次被调用。
由于再次调用了相同的问题,因此此问题具有“重叠子问题”属性。因此,矩阵链乘法问题具有动态编程问题的两个属性(请参阅此内容)。像其他典型的动态编程(DP)问题一样,可以通过以自下而上的方式构造临时数组m [] []来避免相同子问题的重新计算。
动态编程解决方案
以下是使用动态编程(制表与记忆)的矩阵链乘法问题的实现
使用记忆化–
C++
// C++ program using memoization
#include
using namespace std;
int dp[100][100];
// Function for matrix chain multiplication
int matrixChainMemoised(int* p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = INT_MAX;
for (int k = i; k < j; k++)
{
dp[i][j] = min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
int MatrixChainOrder(int* p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
memset(dp, -1, sizeof dp);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, n);
}
// This code is contribted by Sumit_Yadav
Java
// Java program using memoization
import java.io.*;
import java.util.*;
class GFG
{
static int[][] dp = new int[100][100];
// Function for matrix chain multiplication
static int matrixChainMemoised(int[] p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
dp[i][j] = Integer.MAX_VALUE;
for (int k = i; k < j; k++)
{
dp[i][j] = Math.min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i][j];
}
static int MatrixChainOrder(int[] p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver Code
public static void main (String[] args)
{
int arr[] = { 1, 2, 3, 4 };
int n= arr.length;
for (int[] row : dp)
Arrays.fill(row, -1);
System.out.println("Minimum number of multiplications is " + MatrixChainOrder(arr, n));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python program using memoization
import sys
dp = [[-1 for i in range(100)] for j in range(100)]
# Function for matrix chain multiplication
def matrixChainMemoised(p, i, j):
if(i == j):
return 0
if(dp[i][j] != -1):
return dp[i][j]
dp[i][j] = sys.maxsize
for k in range(i,j):
dp[i][j] = min(dp[i][j], matrixChainMemoised(p, i, k) + matrixChainMemoised(p, k + 1, j)+ p[i - 1] * p[k] * p[j])
return dp[i][j]
def MatrixChainOrder(p,n):
i = 1
j = n - 1
return matrixChainMemoised(p, i, j)
# Driver Code
arr = [1, 2, 3, 4]
n = len(arr)
print("Minimum number of multiplications is",MatrixChainOrder(arr, n))
# This code is contributed by rag2127
C#
// C# program using memoization
using System;
class GFG
{
static int[,] dp = new int[100, 100];
// Function for matrix chain multiplication
static int matrixChainMemoised(int[] p, int i, int j)
{
if (i == j)
{
return 0;
}
if (dp[i, j] != -1)
{
return dp[i, j];
}
dp[i, j] = Int32.MaxValue;
for (int k = i; k < j; k++)
{
dp[i, j] = Math.Min(
dp[i, j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
return dp[i,j];
}
static int MatrixChainOrder(int[] p, int n)
{
int i = 1, j = n - 1;
return matrixChainMemoised(p, i, j);
}
// Driver code
static void Main()
{
int[] arr = { 1, 2, 3, 4 };
int n = arr.Length;
for(int i = 0; i < 100; i++)
{
for(int j = 0; j < 100; j++)
{
dp[i, j] = -1;
}
}
Console.WriteLine("Minimum number of multiplications is " +
MatrixChainOrder(arr, n));
}
}
// This code is contributed by divyeshrabadiya07.
Minimum number of multiplications is 18
使用列表–
C++
// See the Cormen book for details of the
// following algorithm
#include
using namespace std;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int m[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the
matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, size);
getchar();
return 0;
}
// This code is contributed
// by Akanksha Rai
C
// See the Cormen book for details of the following
// algorithm
#include
#include
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the program,
one extra row and one
extra column are allocated in m[][].
0th row and 0th
column of m[][] are not used */
int m[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of
scalar multiplications
needed to compute the matrix
A[i]A[i+1]...A[j] =
A[i..j] where dimension of A[i]
is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++) {
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver code
int main()
{
int arr[] = { 1, 2, 3, 4 };
int size = sizeof(arr) / sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, size));
getchar();
return 0;
}
Java
// Dynamic Programming Java implementation of Matrix
// Chain Multiplication.
// See the Cormen book for details of the following
// algorithm
class MatrixChainMultiplication
{
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
static int MatrixChainOrder(int p[], int n)
{
/* For simplicity of the
program, one extra row and
one extra column are allocated in m[][]. 0th row
and 0th column of m[][] are not used */
int m[][] = new int[n][n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the matrix
A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for (i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue;
m[i][j] = Integer.MAX_VALUE;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i][j])
m[i][j] = q;
}
}
}
return m[1][n - 1];
}
// Driver code
public static void main(String args[])
{
int arr[] = new int[] { 1, 2, 3, 4 };
int size = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, size));
}
}
/* This code is contributed by Rajat Mishra*/
Python
# Dynamic Programming Python implementation of Matrix
# Chain Multiplication. See the Cormen book for details
# of the following algorithm
import sys
# Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
def MatrixChainOrder(p, n):
# For simplicity of the program,
# one extra row and one
# extra column are allocated in m[][].
# 0th row and 0th
# column of m[][] are not used
m = [[0 for x in range(n)] for x in range(n)]
# m[i, j] = Minimum number of scalar
# multiplications needed
# to compute the matrix A[i]A[i + 1]...A[j] =
# A[i..j] where
# dimension of A[i] is p[i-1] x p[i]
# cost is zero when multiplying one matrix.
for i in range(1, n):
m[i][i] = 0
# L is chain length.
for L in range(2, n):
for i in range(1, n-L + 1):
j = i + L-1
m[i][j] = sys.maxint
for k in range(i, j):
# q = cost / scalar multiplications
q = m[i][k] + m[k + 1][j] + p[i-1]*p[k]*p[j]
if q < m[i][j]:
m[i][j] = q
return m[1][n-1]
# Driver code
arr = [1, 2, 3, 4]
size = len(arr)
print("Minimum number of multiplications is " +
str(MatrixChainOrder(arr, size)))
# This Code is contributed by Bhavya Jain
C#
// Dynamic Programming C# implementation of
// Matrix Chain Multiplication.
// See the Cormen book for details of the
// following algorithm
using System;
class GFG
{
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
static int MatrixChainOrder(int[] p, int n)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int[, ] m = new int[n, n];
int i, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed
to compute the matrix A[i]A[i+1]...A[j]
= A[i..j] where dimension of A[i] is
p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for (i = 1; i < n; i++)
m[i, i] = 0;
// L is chain length.
for (L = 2; L < n; L++)
{
for (i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if (j == n)
continue;
m[i, j] = int.MaxValue;
for (k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i, k] + m[k + 1, j]
+ p[i - 1] * p[k] * p[j];
if (q < m[i, j])
m[i, j] = q;
}
}
}
return m[1, n - 1];
}
// Driver code
public static void Main()
{
int[] arr = new int[] { 1, 2, 3, 4 };
int size = arr.Length;
Console.Write("Minimum number of "
+ "multiplications is "
+ MatrixChainOrder(arr, size));
}
}
// This code is contributed by Sam007
的PHP
Java脚本
Minimum number of multiplications is 18
?list = PLqM7alHXFySEQDk2MDfbwEdjd2svVJH9p