📌  相关文章
📜  查找长度为N且具有至少3个连续1的二进制字符串的数量

📅  最后修改于: 2021-04-29 15:21:57             🧑  作者: Mango

给定整数N。任务是找到长度为N的所有可能的不同二进制字符串的数量,这些字符串至少具有3个连续的1。

例子:

天真的方法:考虑所有可能的字符串。

下面是上述方法的实现:

C++
// C++ implementation of the approach
#include 
using namespace std;
  
// Function that returns true if s contains
// three consecutive 1's
bool check(string& s)
{
    int n = s.length();
    for (int i = 2; i < n; i++) {
        if (s[i] == '1' && s[i - 1] == '1' && s[i - 2] == '1')
            return 1;
    }
    return 0;
}
  
// Function to return the count
// of required strings
int countStr(int i, string& s)
{
    if (i < 0) {
        if (check(s))
            return 1;
        return 0;
    }
    s[i] = '0';
    int ans = countStr(i - 1, s);
    s[i] = '1';
    ans += countStr(i - 1, s);
    s[i] = '0';
    return ans;
}
  
// Driver code
int main()
{
    int N = 4;
    string s(N, '0');
    cout << countStr(N - 1, s);
  
    return 0;
}


Java
// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
// Function that returns true if s contains
// three consecutive 1's
static boolean check(String s)
{
    int n = s.length();
    for (int i = 2; i < n; i++) 
    {
        if (s.charAt(i) == '1' && 
          s.charAt(i-1) == '1' && 
          s.charAt(i-2) == '1')
            return true;
    }
    return false;
}
  
// Function to return the count
// of required strings
static int countStr(int i, String s)
{
    if (i < 0)
    {
        if (check(s))
            return 1;
        return 0;
    }
    char[] myNameChars = s.toCharArray();
    myNameChars[i] = '0';
    s = String.valueOf(myNameChars);
  
    int ans = countStr(i - 1, s);
    char[] myChar = s.toCharArray();
    myChar[i] = '1';
    s = String.valueOf(myChar);
  
    ans += countStr(i - 1, s);
    char[]myChar1 = s.toCharArray();
    myChar1[i] = '0';
    s = String.valueOf(myChar1);
  
    return ans;
}
  
// Driver code
public static void main(String args[])
{
    int N = 4;
    String s = "0000";
    System.out.println(countStr(N - 1, s));
}
}
  
// This code is contributed by
// Surendra_Gangwar


Python3
# Python3 implementation of the approach
  
# Function that returns true if s contains
# three consecutive 1's
def check(s) :
    n = len(s);
    for i in range(2, n) :
        if (s[i] == '1' and s[i - 1] == '1' and
                            s[i - 2] == '1') :
            return 1;
  
# Function to return the count
# of required strings
def countStr(i, s) :
      
    if (i < 0) :
        if (check(s)) :
            return 1;
        return 0;
      
    s[i] = '0';
    ans = countStr(i - 1, s);
      
    s[i] = '1';
    ans += countStr(i - 1, s);
      
    s[i] = '0';
    return ans;
  
# Driver code
if __name__ == "__main__" :
    N = 4;
    s = list('0' * N);
      
    print(countStr(N - 1, s));
  
# This code is contributed by Ryuga


C#
// C# implementation of the approach
// value x
using System; 
  
class GFG
{
  
// Function that returns true if s contains
// three consecutive 1's
static bool check(String s)
{
    int n = s.Length;
    for (int i = 2; i < n; i++)
    {
        if (s[i] == '1' && s[i - 1] == '1' && s[i - 2] == '1')
            return true;
    }
    return false;
}
  
// Function to return the count
// of required strings
static int countStr(int i, String s)
{
    if (i < 0)
    {
        if (check(s))
            return 1;
        return 0;
    }
    char[] myNameChars = s.ToCharArray();
    myNameChars[i] = '0';
    s = String.Join("", myNameChars);
  
    int ans = countStr(i - 1, s);
    char[] myChar = s.ToCharArray();
    myChar[i] = '1';
    s = String.Join("", myChar);
  
    ans += countStr(i - 1, s);
    char[]myChar1 = s.ToCharArray();
    myChar1[i] = '0';
    s = String.Join("", myChar1);
  
    return ans;
}
  
// Driver code
public static void Main(String []args)
{
    int N = 4;
    String s = "0000";
    Console.WriteLine(countStr(N - 1, s));
}
}
  
/* This code contributed by PrinciRaj1992 */


C++
// C++ implementation of the approach
#include 
using namespace std;
  
int n;
  
// Function to return the count
// of required strings
int solve(int i, int x, int dp[][4])
{
    if (i < 0)
        return x == 3;
    if (dp[i][x] != -1)
        return dp[i][x];
  
    // '0' at ith position
    dp[i][x] = solve(i - 1, 0, dp);
  
    // '1' at ith position
    dp[i][x] += solve(i - 1, x + 1, dp);
    return dp[i][x];
}
  
// Driver code
int main()
{
    n = 4;
    int dp[n][4];
  
    for (int i = 0; i < n; i++)
        for (int j = 0; j < 4; j++)
            dp[i][j] = -1;
  
    for (int i = 0; i < n; i++) {
  
        // Base condition:
        // 2^(i+1) because of 0 indexing
        dp[i][3] = (1 << (i + 1));
    }
    cout << solve(n - 1, 0, dp);
  
    return 0;
}


Java
// Java implementation of the above approach 
import java.util.*;
  
class GFG 
{
  
    static int n;
  
    // Function to return the count
    // of required strings
    static int solve(int i, int x, int dp[][]) 
    {
        if (i < 0) 
        {
            return x == 3 ? 1 : 0;
        }
        if (dp[i][x] != -1) 
        {
            return dp[i][x];
        }
  
        // '0' at ith position
        dp[i][x] = solve(i - 1, 0, dp);
  
        // '1' at ith position
        dp[i][x] += solve(i - 1, x + 1, dp);
        return dp[i][x];
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        n = 4;
        int dp[][] = new int[n][4];
  
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j < 4; j++) 
            {
                dp[i][j] = -1;
            }
        }
  
        for (int i = 0; i < n; i++) 
        {
  
            // Base condition:
            // 2^(i+1) because of 0 indexing
            dp[i][3] = (1 << (i + 1));
        }
        System.out.print(solve(n - 1, 0, dp));
    }
}
  
// This code has been contributed by 29AjayKumar


Python 3
# Python 3 implementation of the approach
  
# Function to return the count
# of required strings
def solve(i, x, dp):
    if (i < 0):
        return x == 3
    if (dp[i][x] != -1):
        return dp[i][x]
  
    # '0' at ith position
    dp[i][x] = solve(i - 1, 0, dp)
  
    # '1' at ith position
    dp[i][x] += solve(i - 1, x + 1, dp)
    return dp[i][x]
  
  
# Driver code
if __name__ == "__main__":
  
    n = 4;
    dp = [[0 for i in range(n)] for j in range(4)]
  
    for i in range(n):
        for j in range(4):
            dp[i][j] = -1
  
    for i in range(n) :
  
        # Base condition:
        # 2^(i+1) because of 0 indexing
        dp[i][3] = (1 << (i + 1))
      
    print(solve(n - 1, 0, dp))
  
# This code is contributed by ChitraNayal


C#
// C# implementation of the above approach 
using System; 
  
class GFG 
{
  
    static int n;
  
    // Function to return the count
    // of required strings
    static int solve(int i, int x, int [,]dp) 
    {
        if (i < 0) 
        {
            return x == 3 ? 1 : 0;
        }
        if (dp[i,x] != -1) 
        {
            return dp[i,x];
        }
  
        // '0' at ith position
        dp[i,x] = solve(i - 1, 0, dp);
  
        // '1' at ith position
        dp[i,x] += solve(i - 1, x + 1, dp);
        return dp[i,x];
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
        n = 4;
        int [,]dp = new int[n, 4];
  
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j < 4; j++) 
            {
                dp[i, j] = -1;
            }
        }
  
        for (int i = 0; i < n; i++) 
        {
  
            // Base condition:
            // 2^(i+1) because of 0 indexing
            dp[i,3] = (1 << (i + 1));
        }
        Console.Write(solve(n - 1, 0, dp));
    }
}
  
// This code contributed by Rajput-Ji


输出:
3

时间复杂度: O(2 N )
空间复杂度:由于递归堆栈空间,所以O(N)。

高效的方法:我们使用动态编程来计算字符串。
dp的状态: dp(i,x):表示长度为i的字符串数,在位置i +1到i + x中具有x个连续的1s。
重复发生: dp(i,x)= dp(i – 1,0)+ dp(i – 1,x + 1)
重复发生是基于以下事实:字符串在位置i处可以具有“ 0”,也可以具有“ 1”。

  1. 如果它在位置i处具有“ 0”,则对于第(i-1)个位置值x = 0。
  2. 如果它在位置i处具有“ 1”,则x的第(i-1)个位置值=在位置i + 1处的x值。

基本条件: dp(i,3)= 2 i 。因为一旦您有了3个连续的’1’,您就不必关心字符串的位置1、2…i上有哪些字符,因为所有字符串都是有效的。

下面是上述方法的实现:

C++

// C++ implementation of the approach
#include 
using namespace std;
  
int n;
  
// Function to return the count
// of required strings
int solve(int i, int x, int dp[][4])
{
    if (i < 0)
        return x == 3;
    if (dp[i][x] != -1)
        return dp[i][x];
  
    // '0' at ith position
    dp[i][x] = solve(i - 1, 0, dp);
  
    // '1' at ith position
    dp[i][x] += solve(i - 1, x + 1, dp);
    return dp[i][x];
}
  
// Driver code
int main()
{
    n = 4;
    int dp[n][4];
  
    for (int i = 0; i < n; i++)
        for (int j = 0; j < 4; j++)
            dp[i][j] = -1;
  
    for (int i = 0; i < n; i++) {
  
        // Base condition:
        // 2^(i+1) because of 0 indexing
        dp[i][3] = (1 << (i + 1));
    }
    cout << solve(n - 1, 0, dp);
  
    return 0;
}

Java

// Java implementation of the above approach 
import java.util.*;
  
class GFG 
{
  
    static int n;
  
    // Function to return the count
    // of required strings
    static int solve(int i, int x, int dp[][]) 
    {
        if (i < 0) 
        {
            return x == 3 ? 1 : 0;
        }
        if (dp[i][x] != -1) 
        {
            return dp[i][x];
        }
  
        // '0' at ith position
        dp[i][x] = solve(i - 1, 0, dp);
  
        // '1' at ith position
        dp[i][x] += solve(i - 1, x + 1, dp);
        return dp[i][x];
    }
  
    // Driver code
    public static void main(String[] args) 
    {
        n = 4;
        int dp[][] = new int[n][4];
  
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j < 4; j++) 
            {
                dp[i][j] = -1;
            }
        }
  
        for (int i = 0; i < n; i++) 
        {
  
            // Base condition:
            // 2^(i+1) because of 0 indexing
            dp[i][3] = (1 << (i + 1));
        }
        System.out.print(solve(n - 1, 0, dp));
    }
}
  
// This code has been contributed by 29AjayKumar

的Python 3

# Python 3 implementation of the approach
  
# Function to return the count
# of required strings
def solve(i, x, dp):
    if (i < 0):
        return x == 3
    if (dp[i][x] != -1):
        return dp[i][x]
  
    # '0' at ith position
    dp[i][x] = solve(i - 1, 0, dp)
  
    # '1' at ith position
    dp[i][x] += solve(i - 1, x + 1, dp)
    return dp[i][x]
  
  
# Driver code
if __name__ == "__main__":
  
    n = 4;
    dp = [[0 for i in range(n)] for j in range(4)]
  
    for i in range(n):
        for j in range(4):
            dp[i][j] = -1
  
    for i in range(n) :
  
        # Base condition:
        # 2^(i+1) because of 0 indexing
        dp[i][3] = (1 << (i + 1))
      
    print(solve(n - 1, 0, dp))
  
# This code is contributed by ChitraNayal

C#

// C# implementation of the above approach 
using System; 
  
class GFG 
{
  
    static int n;
  
    // Function to return the count
    // of required strings
    static int solve(int i, int x, int [,]dp) 
    {
        if (i < 0) 
        {
            return x == 3 ? 1 : 0;
        }
        if (dp[i,x] != -1) 
        {
            return dp[i,x];
        }
  
        // '0' at ith position
        dp[i,x] = solve(i - 1, 0, dp);
  
        // '1' at ith position
        dp[i,x] += solve(i - 1, x + 1, dp);
        return dp[i,x];
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
        n = 4;
        int [,]dp = new int[n, 4];
  
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j < 4; j++) 
            {
                dp[i, j] = -1;
            }
        }
  
        for (int i = 0; i < n; i++) 
        {
  
            // Base condition:
            // 2^(i+1) because of 0 indexing
            dp[i,3] = (1 << (i + 1));
        }
        Console.Write(solve(n - 1, 0, dp));
    }
}
  
// This code contributed by Rajput-Ji
输出:
3

时间复杂度: O(N)
空间复杂度: O(N)