给定一个具有N个节点和E个边缘的有向图,其中每个边缘的权重> 1 ,还给出了源S和目标D。任务是找到从S到D的边的最小积的路径。如果没有从S到D的路径,则打印-1 。
例子:
Input: N = 3, E = 3, Edges = {{{1, 2}, 5}, {{1, 3}, 9}, {{2, 3}, 1}}, S = 1, and D = 3
Output: 5
The path with smallest product of edges will be 1->2->3
with product as 5*1 = 5.
Input: N = 3, E = 3, Edges = {{{3, 2}, 5}, {{3, 3}, 9}, {{3, 3}, 1}}, S = 1, and D = 3
Output: -1
方法:想法是使用Dijkstra的最短路径算法,并稍有变化。
可以按照以下步骤计算结果:
- 如果源等于目的地,则返回0 。
- 使用S及其权重为1和访问数组v []初始化优先级队列pq 。
- 当pq不为空时:
- 从pq弹出最上面的元素。让我们将其称为curr,并将其距离的乘积称为dist 。
- 如果已经访问过curr,则继续。
- 如果curr等于D,则返回dist 。
- 迭代与curr相邻的所有节点并压入pq (next和dist + gr [nxt] .weight)
- 返回-1 。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Function to return the smallest
// product of edges
double dijkstra(int s, int d,
vector > > gr)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Initialise the priority queue
set > pq;
pq.insert({ 1, s });
// Visited array
bool v[gr.size()] = { 0 };
// While the priority-queue
// is not empty
while (pq.size()) {
// Current node
int curr = pq.begin()->second;
// Current product of distance
int dist = pq.begin()->first;
// Popping the top-most element
pq.erase(pq.begin());
// If already visited continue
if (v[curr])
continue;
// Marking the node as visited
v[curr] = 1;
// If it is a destination node
if (curr == d)
return dist;
// Traversing the current node
for (auto it : gr[curr])
pq.insert({ dist * it.second, it.first });
}
// If no path exists
return -1;
}
// Driver code
int main()
{
int n = 3;
// Graph as adjacency matrix
vector > > gr(n + 1);
// Input edges
gr[1].push_back({ 3, 9 });
gr[2].push_back({ 3, 1 });
gr[1].push_back({ 2, 5 });
// Source and destination
int s = 1, d = 3;
// Dijkstra
cout << dijkstra(s, d, gr);
return 0;
}
Java
// Java implementation of the approach
import java.util.ArrayList;
import java.util.PriorityQueue;
class Pair implements Comparable
{
int first, second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair o)
{
if (this.first == o.first)
{
return this.second - o.second;
}
return this.first - o.first;
}
}
class GFG{
// Function to return the smallest
// xor sum of edges
static int dijkstra(int s, int d,
ArrayList> gr)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Initialise the priority queue
PriorityQueue pq = new PriorityQueue<>();
pq.add(new Pair(1, s));
// Visited array
boolean[] v = new boolean[gr.size()];
// While the priority-queue
// is not empty
while (!pq.isEmpty())
{
// Current node
Pair p = pq.poll();
int curr = p.second;
// Current xor sum of distance
int dist = p.first;
// If already visited continue
if (v[curr])
continue;
// Marking the node as visited
v[curr] = true;
// If it is a destination node
if (curr == d)
return dist;
// Traversing the current node
for(Pair it : gr.get(curr))
pq.add(new Pair(dist ^ it.second, it.first));
}
// If no path exists
return -1;
}
// Driver code
public static void main(String[] args)
{
int n = 3;
// Graph as adjacency matrix
ArrayList> gr = new ArrayList<>();
for(int i = 0; i < n + 1; i++)
{
gr.add(new ArrayList());
}
// Input edges
gr.get(1).add(new Pair(3, 9));
gr.get(2).add(new Pair(3, 1));
gr.get(1).add(new Pair(2, 5));
// Source and destination
int s = 1, d = 3;
System.out.println(dijkstra(s, d, gr));
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 implementation of the approach
# Function to return the smallest
# product of edges
def dijkstra(s, d, gr) :
# If the source is equal
# to the destination
if (s == d) :
return 0;
# Initialise the priority queue
pq = [];
pq.append(( 1, s ));
# Visited array
v = [0]*(len(gr) + 1);
# While the priority-queue
# is not empty
while (len(pq) != 0) :
# Current node
curr = pq[0][1];
# Current product of distance
dist = pq[0][0];
# Popping the top-most element
pq.pop();
# If already visited continue
if (v[curr]) :
continue;
# Marking the node as visited
v[curr] = 1;
# If it is a destination node
if (curr == d) :
return dist;
# Traversing the current node
for it in gr[curr] :
if it not in pq :
pq.insert(0,( dist * it[1], it[0] ));
# If no path exists
return -1;
# Driver code
if __name__ == "__main__" :
n = 3;
# Graph as adjacency matrix
gr = {};
# Input edges
gr[1] = [( 3, 9) ];
gr[2] = [ (3, 1) ];
gr[1].append(( 2, 5 ));
gr[3] = [];
#print(gr);
# Source and destination
s = 1; d = 3;
# Dijkstra
print(dijkstra(s, d, gr));
# This code is contributed by AnkitRai01
输出:
5
时间复杂度: O((E + V)logV)