给定一个有N个节点和E个边的有向图,其中每个边的权重> 0 ,还给出了源S和目标D。任务是找到从S到D的边的乘积最小的路径。如果没有从S到D的路径,则打印-1 。
例子:
Input: N = 3, E = 3, Edges = {{{1, 2}, 0.5}, {{1, 3}, 1.9}, {{2, 3}, 3}}, S = 1, and D = 3
Output: 1.5
Explanation:
The shortest path will be 1->2->3
with value 0.5*3 = 1.5
Input: N = 3, E = 3, Edges = {{{1, 2}, 0.5}, {{2, 3}, 0.5}, {{3, 1}, 0.5}}, S = 1, and D = 3
Output: cycle detected
方法:想法是使用Bellman ford算法。这是因为Dijkstra的算法在这里不能使用,因为它仅适用于非负边缘。这是因为在[0-1]之间乘以值时,乘积会无限期地减小,最后返回0。
此外,需要检测循环,因为如果存在一个循环,则该循环的乘积将无限期地将乘积减小为0,并且乘积将趋于0。为简单起见,我们将报告此类循环。
可以按照以下步骤计算结果:
- 初始化一个数组, dis []的初始值为’inf’,但dis [S]的值为1。
- 从1 – N-1循环运行。对于图中的每个边:
- dis [edge.second] = min(dis [edge.second],dis [edge.first] * weight(edge))
- 对图形中的每个边缘运行另一个循环,如果任何边缘以(dis [edge.second]> dis [edge.first] * weight(edge))退出,则将检测到循环。
- 如果dist [d]为无穷大,则返回-1 ,否则返回dist [d] 。
下面是上述方法的实现:
C++
// C++ implementation of the approach.
#include
using namespace std;
double inf = std::
numeric_limits::infinity();
// Function to return the smallest
// product of edges
double bellman(int s, int d,
vector,
double> >
ed,
int n)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Array to store distances
double dis[n + 1];
// Initialising the array
for (int i = 1; i <= n; i++)
dis[i] = inf;
dis[s] = 1;
// Bellman ford algorithm
for (int i = 0; i < n - 1; i++)
for (auto it : ed)
dis[it.first.second] = min(dis[it.first.second],
dis[it.first.first]
* it.second);
// Loop to detect cycle
for (auto it : ed) {
if (dis[it.first.second]
> dis[it.first.first] * it.second)
return -2;
}
// Returning final answer
if (dis[d] == inf)
return -1;
else
return dis[d];
}
// Driver code
int main()
{
int n = 3;
vector, double> > ed;
// Input edges
ed = { { { 1, 2 }, 0.5 },
{ { 1, 3 }, 1.9 },
{ { 2, 3 }, 3 } };
// Source and Destination
int s = 1, d = 3;
// Bellman ford
double get = bellman(s, d, ed, n);
if (get == -2)
cout << "Cycle Detected";
else
cout << get;
}
Java
// Java implementation of the approach
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
class Pair
{
K first;
V second;
public Pair(K first, V second)
{
this.first = first;
this.second = second;
}
}
class GFG{
static final float inf = Float.POSITIVE_INFINITY;
// Function to return the smallest
// product of edges
static float bellman(int s, int d,
ArrayList, Float>> ed,
int n)
{
// If the source is equal
// to the destination
if (s == d)
return 0;
// Array to store distances
float[] dis = new float[n + 1];
// Initialising the array
Arrays.fill(dis, inf);
dis[s] = 1;
// Bellman ford algorithm
for(int i = 0; i < n - 1; i++)
for(Pair, Float> it : ed)
dis[it.first.second] = Math.min(dis[it.first.second],
dis[it.first.first] *
it.second);
// Loop to detect cycle
for(Pair, Float> it : ed)
{
if (dis[it.first.second] >
dis[it.first.first] *
it.second)
return -2;
}
// Returning final answer
if (dis[d] == inf)
return -1;
else
return dis[d];
}
// Driver code
public static void main(String[] args)
{
int n = 3;
// Input edges
ArrayList, Float>> ed = new ArrayList<>(
Arrays.asList(
new Pair, Float>(
new Pair(1, 2), 0.5f),
new Pair, Float>(
new Pair(1, 3), 1.9f),
new Pair, Float>(
new Pair(2, 3), 3f)));
// Source and Destination
int s = 1, d = 3;
// Bellman ford
float get = bellman(s, d, ed, n);
if (get == -2)
System.out.println("Cycle Detected");
else
System.out.println(get);
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 implementation of the approach.
import sys
inf = sys.maxsize;
# Function to return the smallest
# product of edges
def bellman(s, d, ed, n) :
# If the source is equal
# to the destination
if (s == d) :
return 0;
# Array to store distances
dis = [0]*(n + 1);
# Initialising the array
for i in range(1, n + 1) :
dis[i] = inf;
dis[s] = 1;
# Bellman ford algorithm
for i in range(n - 1) :
for it in ed :
dis[it[1]] = min(dis[it[1]], dis[it[0]] * ed[it]);
# Loop to detect cycle
for it in ed :
if (dis[it[1]] > dis[it[0]] * ed[it]) :
return -2;
# Returning final answer
if (dis[d] == inf) :
return -1;
else :
return dis[d];
# Driver code
if __name__ == "__main__" :
n = 3;
# Input edges
ed = { ( 1, 2 ) : 0.5 ,
( 1, 3 ) : 1.9 ,
( 2, 3 ) : 3 };
# Source and Destination
s = 1; d = 3;
# Bellman ford
get = bellman(s, d, ed, n);
if (get == -2) :
print("Cycle Detected");
else :
print(get);
# This code is contributed by AnkitRai01
输出:
1.5
时间复杂度: O(E * V)