以交替顺序打印二叉树每一层的极值节点
给定一棵二叉树,以交替顺序打印每个级别的极角节点。
例子:
对于上面的树,输出可以是
1 2 7 8 31
– 打印第一级最右边的节点
- 打印第 2 级的最左边节点
– 打印第 3 层最右边的节点
- 打印第 4 层的最左侧节点
– 打印第 5 层最右边的节点
要么
1 3 4 15 16
- 打印第一级最左边的节点
– 打印第 2 层最右边的节点
- 打印第 3 级的最左侧节点
– 打印第 4 层最右边的节点
– 打印第 5 层的最左边节点
这个想法是逐级遍历树。对于每个级别,我们计算其中的节点数并根据布尔标志的值打印其最左边或最右边的节点。我们将当前级别的所有节点出列并入列下一级的所有节点并在切换级别时反转布尔标志的值。
下面是上述想法的实现——
C++
/* C++ program to print nodes of extreme corners
of each level in alternate order */
#include
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
int data;
Node *left, *right;
};
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
Node* newNode(int data)
{
Node* node = new Node;
node->data = data;
node->right = node->left = NULL;
return node;
}
/* Function to print nodes of extreme corners
of each level in alternate order */
void printExtremeNodes(Node* root)
{
if (root == NULL)
return;
// Create a queue and enqueue left and right
// children of root
queue q;
q.push(root);
// flag to indicate whether leftmost node or
// the rightmost node has to be printed
bool flag = false;
while (!q.empty())
{
// nodeCount indicates number of nodes
// at current level.
int nodeCount = q.size();
int n = nodeCount;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (n--)
{
Node* curr = q.front();
// Enqueue left child
if (curr->left)
q.push(curr->left);
// Enqueue right child
if (curr->right)
q.push(curr->right);
// Dequeue node
q.pop();
// if flag is true, print leftmost node
if (flag && n == nodeCount - 1)
cout << curr->data << " ";
// if flag is false, print rightmost node
if (!flag && n == 0)
cout << curr->data << " ";
}
// invert flag for next level
flag = !flag;
}
}
/* Driver program to test above functions */
int main()
{
// Binary Tree of Height 4
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(7);
root->left->left->left = newNode(8);
root->left->left->right = newNode(9);
root->left->right->left = newNode(10);
root->left->right->right = newNode(11);
root->right->right->left = newNode(14);
root->right->right->right = newNode(15);
root->left->left->left->left = newNode(16);
root->left->left->left->right = newNode(17);
root->right->right->right->right = newNode(31);
printExtremeNodes(root);
return 0;
}
Java
// Java program to print nodes of extreme corners
//of each level in alternate order
import java.util.*;
class GFG
{
// A binary tree node has data, pointer to left child
//and a pointer to right child /
static class Node
{
int data;
Node left, right;
};
// Helper function that allocates a new node with the
//given data and null left and right pointers. /
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.right = node.left = null;
return node;
}
// Function to print nodes of extreme corners
//of each level in alternate order
static void printExtremeNodes(Node root)
{
if (root == null)
return;
// Create a queue and enqueue left and right
// children of root
Queue q = new LinkedList();
q.add(root);
// flag to indicate whether leftmost node or
// the rightmost node has to be printed
boolean flag = false;
while (q.size()>0)
{
// nodeCount indicates number of nodes
// at current level.
int nodeCount = q.size();
int n = nodeCount;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (n-->0)
{
Node curr = q.peek();
// Enqueue left child
if (curr.left!=null)
q.add(curr.left);
// Enqueue right child
if (curr.right!=null)
q.add(curr.right);
// Dequeue node
q.remove();
// if flag is true, print leftmost node
if (flag && n == nodeCount - 1)
System.out.print( curr.data + " ");
// if flag is false, print rightmost node
if (!flag && n == 0)
System.out.print( curr.data + " ");
}
// invert flag for next level
flag = !flag;
}
}
// Driver code
public static void main(String args[])
{
// Binary Tree of Height 4
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.right = newNode(7);
root.left.left.left = newNode(8);
root.left.left.right = newNode(9);
root.left.right.left = newNode(10);
root.left.right.right = newNode(11);
root.right.right.left = newNode(14);
root.right.right.right = newNode(15);
root.left.left.left.left = newNode(16);
root.left.left.left.right = newNode(17);
root.right.right.right.right = newNode(31);
printExtremeNodes(root);
}
}
// This code is contributed by Arnab Kundu
Python
# Python program to print nodes of extreme corners
# of each level in alternate order
# Utility class to create a node
class Node:
def __init__(self, key):
self.data = key
self.left = self.right = None
# Utility function to create a tree node
def newNode( data):
temp = Node(0)
temp.data = data
temp.left = temp.right = None
return temp
# Function to print nodes of extreme corners
# of each level in alternate order
def printExtremeNodes( root):
if (root == None):
return
# Create a queue and enqueue left and right
# children of root
q = []
q.append(root)
# flag to indicate whether leftmost node or
# the rightmost node has to be printed
flag = False
while (len(q) > 0):
# nodeCount indicates number of nodes
# at current level.
nodeCount = len(q)
n = nodeCount
# Dequeue all nodes of current level
# and Enqueue all nodes of next level
while (n > 0):
n = n - 1
curr = q[0]
# Enqueue left child
if (curr.left != None):
q.append(curr.left)
# Enqueue right child
if (curr.right != None):
q.append(curr.right)
# Dequeue node
q.pop(0)
# if flag is true, print leftmost node
if (flag and n == nodeCount - 1):
print( curr.data , end=" ")
# if flag is false, print rightmost node
if (not flag and n == 0):
print( curr.data ,end= " ")
# invert flag for next level
flag = not flag
# Driver program to test above functions
# Binary Tree of Height 4
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.right = newNode(7)
root.left.left.left = newNode(8)
root.left.left.right = newNode(9)
root.left.right.left = newNode(10)
root.left.right.right = newNode(11)
root.right.right.left = newNode(14)
root.right.right.right = newNode(15)
root.left.left.left.left = newNode(16)
root.left.left.left.right = newNode(17)
root.right.right.right.right = newNode(31)
printExtremeNodes(root)
# This code is contributed by Arnab Kundu
C#
// C# program to print nodes of extreme corners
//of each level in alternate order
using System;
using System.Collections.Generic;
class GFG
{
// A binary tree node has data, pointer to left child
//and a pointer to right child /
public class Node
{
public int data;
public Node left, right;
};
// Helper function that allocates a new node with the
//given data and null left and right pointers. /
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.right = node.left = null;
return node;
}
// Function to print nodes of extreme corners
//of each level in alternate order
static void printExtremeNodes(Node root)
{
if (root == null)
return;
// Create a queue and enqueue left and right
// children of root
Queue q = new Queue();
q.Enqueue(root);
// flag to indicate whether leftmost node or
// the rightmost node has to be printed
Boolean flag = false;
while (q.Count > 0)
{
// nodeCount indicates number of nodes
// at current level.
int nodeCount = q.Count;
int n = nodeCount;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (n-->0)
{
Node curr = q.Peek();
// Enqueue left child
if (curr.left != null)
q.Enqueue(curr.left);
// Enqueue right child
if (curr.right != null)
q.Enqueue(curr.right);
// Dequeue node
q.Dequeue();
// if flag is true, print leftmost node
if (flag && n == nodeCount - 1)
Console.Write( curr.data + " ");
// if flag is false, print rightmost node
if (!flag && n == 0)
Console.Write( curr.data + " ");
}
// invert flag for next level
flag = !flag;
}
}
// Driver code
public static void Main(String []args)
{
// Binary Tree of Height 4
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.right = newNode(7);
root.left.left.left = newNode(8);
root.left.left.right = newNode(9);
root.left.right.left = newNode(10);
root.left.right.right = newNode(11);
root.right.right.left = newNode(14);
root.right.right.right = newNode(15);
root.left.left.left.left = newNode(16);
root.left.left.left.right = newNode(17);
root.right.right.right.right = newNode(31);
printExtremeNodes(root);
}
}
// This code is contributed by Rajput-Ji
Javascript
输出:
1 2 7 8 31
上述解决方案的时间复杂度为 O(n),其中 n 是给定二叉树中的节点总数。