打印给定二叉树的每一层中除最左边节点之外的所有节点
给定一棵二叉树,任务是在树的每一层打印除最左边之外的所有节点。根被认为是第 0 层,任何级别的最左节点被认为是位置 0 的节点。
例子:
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。
Input:
1
/ \
2 3
/ \ \
4 5 6
/ \
7 8
/ \
9 10
Output:
3
5 6
8
10
Input:
1
/ \
2 3
\ \
4 5
Output:
3
5
方法:要逐层打印节点,使用层序遍历。该想法基于逐行打印级别顺序遍历。为此,逐级遍历节点并在处理每个级别之前将最左边的标志标记为真,并在处理每个级别的第一个节点之后将其标记为假。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Structure of the tree node
struct Node {
int data;
Node *left, *right;
};
// Utility method to create a node
struct Node* newNode(int data)
{
struct Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return (node);
}
// Function to print all the nodes
// except the leftmost in every level
// of the given binary tree
// with level order traversal
void excludeLeftmost(Node* root)
{
// Base Case
if (root == NULL)
return;
// Create an empty queue for level
// order traversal
queue q;
// Enqueue root
q.push(root);
while (1) {
// nodeCount (queue size) indicates
// number of nodes at current level.
int nodeCount = q.size();
if (nodeCount == 0)
break;
// Initialize leftmost as true
// just before the beginning
// of each level
bool leftmost = true;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (nodeCount > 0) {
Node* node = q.front();
// Switch leftmost flag after processing
// the leftmost node
if (leftmost)
leftmost = !leftmost;
// Print all the nodes except leftmost
else
cout << node->data << " ";
q.pop();
if (node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
nodeCount--;
}
cout << "\n";
}
}
// Driver code
int main()
{
struct Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->left = newNode(6);
root->right->right = newNode(7);
root->left->right->left = newNode(8);
root->left->right->right = newNode(9);
root->left->right->right->right = newNode(10);
excludeLeftmost(root);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class Sol
{
// Structure of the tree node
static class Node
{
int data;
Node left, right;
};
// Utility method to create a node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
// Function to print all the nodes
// except the leftmost in every level
// of the given binary tree
// with level order traversal
static void excludeLeftmost(Node root)
{
// Base Case
if (root == null)
return;
// Create an empty queue for level
// order traversal
Queue q = new LinkedList();
// Enqueue root
q.add(root);
while (true)
{
// nodeCount (queue size) indicates
// number of nodes at current level.
int nodeCount = q.size();
if (nodeCount == 0)
break;
// Initialize leftmost as true
// just before the beginning
// of each level
boolean leftmost = true;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (nodeCount > 0)
{
Node node = q.peek();
// Switch leftmost flag after processing
// the leftmost node
if (leftmost)
leftmost = !leftmost;
// Print all the nodes except leftmost
else
System.out.print( node.data + " ");
q.remove();
if (node.left != null)
q.add(node.left);
if (node.right != null)
q.add(node.right);
nodeCount--;
}
System.out.println();
}
}
// Driver code
public static void main(String args[])
{
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.left = newNode(6);
root.right.right = newNode(7);
root.left.right.left = newNode(8);
root.left.right.right = newNode(9);
root.left.right.right.right = newNode(10);
excludeLeftmost(root);
}
}
// This code is contributed by Arnab Kundu
Python3
# Python implementation of the approach
from collections import deque
# Structure of the tree node
class Node:
def __init__(self):
self.data = 0
self.left = None
self.right = None
# Utility method to create a node
def newNode(data: int) -> Node:
node = Node()
node.data = data
node.left = None
node.right = None
return node
# Function to print all the nodes
# except the leftmost in every level
# of the given binary tree
# with level order traversal
def excludeLeftMost(root: Node):
# Base Case
if root is None:
return
# Create an empty queue for level
# order traversal
q = deque()
# Enqueue root
q.append(root)
while 1:
# nodeCount (queue size) indicates
# number of nodes at current level
nodeCount = len(q)
if nodeCount == 0:
break
# Initialize leftmost as true
# just before the beginning
# of each level
leftmost = True
# Dequeue all nodes of current level
# and Enqueue all nodes of next level
while nodeCount > 0:
node = q[0]
# Switch leftmost flag after processing
# the leftmost node
if leftmost:
leftmost = not leftmost
# Print all the nodes except leftmost
else:
print(node.data, end=" ")
q.popleft()
if node.left is not None:
q.append(node.left)
if node.right is not None:
q.append(node.right)
nodeCount -= 1
print()
# Driver Code
if __name__ == "__main__":
root = Node()
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.left = newNode(6)
root.right.right = newNode(7)
root.left.right.left = newNode(8)
root.left.right.right = newNode(9)
root.left.right.right.right = newNode(10)
excludeLeftMost(root)
# This code is contributed by
# sanjeev2552
C#
// C# implementation of the above approach
using System;
using System.Collections.Generic;
class GFG
{
// Structure of the tree node
public class Node
{
public int data;
public Node left, right;
};
// Utility method to create a node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
// Function to print all the nodes
// except the leftmost in every level
// of the given binary tree
// with level order traversal
static void excludeLeftmost(Node root)
{
// Base Case
if (root == null)
return;
// Create an empty queue for level
// order traversal
Queue q = new Queue();
// Enqueue root
q.Enqueue(root);
while (true)
{
// nodeCount (queue size) indicates
// number of nodes at current level.
int nodeCount = q.Count;
if (nodeCount == 0)
break;
// Initialize leftmost as true
// just before the beginning
// of each level
Boolean leftmost = true;
// Dequeue all nodes of current level
// and Enqueue all nodes of next level
while (nodeCount > 0)
{
Node node = q.Peek();
// Switch leftmost flag after processing
// the leftmost node
if (leftmost)
leftmost = !leftmost;
// Print all the nodes except leftmost
else
Console.Write( node.data + " ");
q.Dequeue();
if (node.left != null)
q.Enqueue(node.left);
if (node.right != null)
q.Enqueue(node.right);
nodeCount--;
}
Console.WriteLine();
}
}
// Driver code
public static void Main(String []args)
{
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right.left = newNode(6);
root.right.right = newNode(7);
root.left.right.left = newNode(8);
root.left.right.right = newNode(9);
root.left.right.right.right = newNode(10);
excludeLeftmost(root);
}
}
// This code is contributed by PrinciRaj1992
Javascript
输出:
3
5 6 7
9