📅  最后修改于: 2023-12-03 15:26:37.726000             🧑  作者: Mango
在图形处理和计算机视觉中,常常需要对图像进行处理和分析。对于一张图像中的网格,我们可能需要找出其中带有阴影的部分,以便进一步的处理。本文将介绍如何编写一个程序来查找图像中带阴影的网格的百分比。
本算法的流程如下:
下面是本算法的代码实现,使用Python语言编写。
import cv2
import numpy as np
# Read input image
img = cv2.imread('input.jpg')
# Convert color image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Binarize grayscale image using adaptive thresholding
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 5)
# Find connected components in the image
ccl = cv2.connectedComponentsWithStats(thresh)
# Get the indices of the black pixels in the image
indices = np.argwhere(thresh == 0)
# For each connected component, check if it is a grid with shadow
total_grids = 0
shadow_grids = 0
for i in range(1, ccl[0]):
# Get the bounding box (left, top, width, height) of the connected component
left, top, width, height, _ = ccl[2][i]
# Check if width and height are similar, which indicates a square grid
if abs(width - height) < 10: # tolerance of 10 pixels
# Check if the grid has shadow
grid_indices = indices[(indices[:, 0] >= left) & (indices[:, 0] < left + width) &
(indices[:, 1] >= top) & (indices[:, 1] < top + height)]
black_pixels = grid_indices.shape[0]
threshold_pixels = 0.2 * width * height # assume 20% of the pixels need to be black for it to be considered as shadow
if black_pixels >= threshold_pixels:
shadow_grids += 1
total_grids += 1
# Compute percentage of grids with shadow
shadow_percentage = shadow_grids / total_grids * 100
print('Total grids:', total_grids)
print('Shadow grids:', shadow_grids)
print('Shadow percentage:', shadow_percentage)
本文介绍了如何编写一个程序来查找图像中带阴影的网格的百分比。通过对灰度图像进行二值化处理和连通区域分析,我们可以找到所有的网格,并对每个网格进行分析,判断是否带有阴影。最终,我们统计带阴影的网格数和总网格数,计算带阴影网格的百分比。这个算法不仅可以应用于网格,也可以应用于其他类型的图像分析。