📜  检查图是强连通、单边连通还是弱连通(1)

📅  最后修改于: 2023-12-03 15:26:45.564000             🧑  作者: Mango

检查图的连通性

在图论中,连通性表示一张图中任意两个顶点之间是否存在一条路径。根据这个定义,我们可以将图分为三种类型:强连通图、弱连通图和单边连通图。这里,我们将讲解如何使用Python检查图的连通性。

强连通图

如果一张图中任意两个顶点之间都存在一条有向路径,则称该图为强连通图。强连通图的一个重要性质是,对于每一对顶点u、v,我们都可以在O(V+E)的时间复杂度内找到一条从u到v的路径。

为了检查一张图是否为强连通图,我们可以使用Kosaraju算法。这个算法的实现步骤如下:

  1. 使用DFS遍历图,记录每个顶点的出边,得到一个反向图Grev;

  2. 对反向图Grev使用DFS遍历,得到每个顶点的强连通分量;

  3. 对原图G的每个强连通分量,判断其中是否存在一条路径可以到达该强连通分量的所有顶点,如果存在,则该图为强连通图。

下面是使用Python实现上述算法的代码片段:

def is_strongly_connected(graph):
    """
    :param graph: Adjacency matrix representation of graph.
    :return: True if the graph is strongly connected, False otherwise.
    """
    def dfs(node, visited, adj_list):
        visited[node] = True
        for neighbor in adj_list[node]:
            if not visited[neighbor]:
                dfs(neighbor, visited, adj_list)

    n = len(graph)
    visited = [False] * n
    adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[i][j]:
                adj_list[i].append(j)

    # First DFS to obtain reverse graph.
    rev_adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[j][i]:
                rev_adj_list[i].append(j)

    for node in range(n):
        if not visited[node]:
            dfs(node, visited, adj_list)

    for i in range(n):
        visited[i] = False

    # Second DFS to obtain strong connected components.
    dfs_order, strong_components = [], []
    for node in range(n):
        if not visited[node]:
            dfs(node, visited, rev_adj_list)
            for component_root in reversed(dfs_order):
                if visited[component_root]:
                    break
                else:
                    strong_components.append({component_root})
            dfs_order = []
        dfs_order.append(node)
    for component_root in reversed(dfs_order):
        if visited[component_root]:
            continue
        strong_components.append({component_root})

    # Check if any strong connected component reaches all other nodes.
    scc_reaches_all = False
    for component in strong_components:
        component_reaches_all = True
        for node in range(n):
            if node not in component:
                visited[node] = False
        dfs(list(component)[0], visited, adj_list)
        for node in range(n):
            if not visited[node]:
                component_reaches_all = False
                break
        if component_reaches_all:
            scc_reaches_all = True
            break

    return scc_reaches_all
弱连通图

如果一张有向图的所有顶点都在一个强连通分量中,则称该图为弱连通图。弱连通图的另一个等价的定义是,该图的无向版本是连通图。因此,我们可以使用Tarjan算法来判断一个有向图是否为弱连通图。

下面是使用Python实现Tarjan算法来判断一张有向图是否为弱连通图的代码片段:

def is_weakly_connected(graph):
    """
    :param graph: Adjacency matrix representation of graph.
    :return: True if the graph is weakly connected, False otherwise.
    """
    def dfs(node, visited, adj_list):
        visited[node] = True
        for neighbor in adj_list[node]:
            if not visited[neighbor]:
                dfs(neighbor, visited, adj_list)

    n = len(graph)
    visited = [False] * n
    adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[i][j]:
                adj_list[i].append(j)

    # First DFS to obtain reverse graph.
    rev_adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[j][i]:
                rev_adj_list[i].append(j)

    for node in range(n):
        if not visited[node]:
            dfs(node, visited, adj_list)

    for i in range(n):
        for j in range(n):
            if graph[i][j] and visited[i] and visited[j]:
                return True

    return False
单边连通图

如果一张有向图不是强连通图,但其任意两个顶点之间都存在一条有向路径,则称该图为单边连通图。单边连通图也被称为半连通图或半强连通图。

为了检查图是否为单边连通图,我们可以先使用Kosaraju算法求出强连通分量,然后逐个判断其中是否存在反向边。如果存在反向边,则该强连通分量不是单边连通图。

下面是使用Python实现上述算法的代码片段:

def is_semi_connected(graph):
    """
    :param graph: Adjacency matrix representation of graph.
    :return: True if the graph is semi-connected, False otherwise.
    """
    def dfs(node, visited, adj_list):
        visited[node] = True
        for neighbor in adj_list[node]:
            if not visited[neighbor]:
                dfs(neighbor, visited, adj_list)

    n = len(graph)
    visited = [False] * n
    adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[i][j]:
                adj_list[i].append(j)

    # First DFS to obtain reverse graph.
    rev_adj_list = [[] for _ in range(n)]
    for i in range(n):
        for j in range(n):
            if graph[j][i]:
                rev_adj_list[i].append(j)

    for node in range(n):
        if not visited[node]:
            dfs(node, visited, adj_list)

    strong_components = []
    stack = []
    visited = [False] * n
    for node in range(n):
        if not visited[node]:
            component = set()
            stack.append(node)
            while stack:
                curr_node = stack.pop()
                if not visited[curr_node]:
                    visited[curr_node] = True
                    component.add(curr_node)
                    for neighbor in adj_list[curr_node]:
                        stack.append(neighbor)
            strong_components.append(component)

    is_semi_connected_graph = True
    for component in strong_components:
        for node in component:
            for neighbor in adj_list[node]:
                if neighbor not in component:
                    is_semi_connected_graph = False

    return is_semi_connected_graph

以上是Python实现检查图的连通性的算法和代码片段。