📜  连续电荷分布(1)

📅  最后修改于: 2023-12-03 14:57:58.135000             🧑  作者: Mango

连续电荷分布

连续电荷分布是指在空间内某一连续区域中的电荷分布情况。在物理学中,我们通常使用电荷密度的概念来描述连续电荷分布。

在计算机科学中,我们需要进行模拟和计算来研究连续电荷分布的电场和电势。本文将介绍几种用于模拟连续电荷分布的常用算法,并提供相关代码。

静电场算法

静电场算法用于计算连续电荷分布的电场。它通过在空间中离散化电荷分布,计算电场。可以使用以下公式计算电场:

$$ E=\frac{1}{4\pi\epsilon_0}\int\frac{\rho(r')}{|r-r'|^2}\hat{r}d\tau' $$

其中,$r'$是源点的位置矢量,$r$是电场点的位置矢量,$\rho(r')$是源点处的电荷密度,$\epsilon_0$是真空介质常数,$\hat{r}$是由$r$指向$r'$的单位向量。

静电场算法的核心是离散化电荷分布,将空间分为有限的小区域。一个简单的方法是使用网格表示法,将空间划分为网格,每个网格中只包含一个电荷点。

以下是Python代码,可以使用此代码计算电场并将其可视化:

import numpy as np
import matplotlib.pyplot as plt

eps0 = 8.854e-12  # Vacuum permittivity constant

def calc_electric_field(charge_density, origin, grid_size, grid_dimensions):
    """Calculate electric field due to charge distribution using grid-based method"""

    # Initialize arrays to store electric field components
    e_x = np.zeros((grid_dimensions[0], grid_dimensions[1]), dtype=np.float32)
    e_y = np.zeros((grid_dimensions[0], grid_dimensions[1]), dtype=np.float32)

    # Iterate over all grid points
    for i in range(grid_dimensions[0]):
        for j in range(grid_dimensions[1]):

            # Calculate position vector from grid point to origin
            r = np.array([i * grid_size[0], j * grid_size[1]]) - origin

            # Iterate over all charges and add their contribution
            for charge_pos, charge in charge_density.items():
                r_prime = np.array(charge_pos) - origin

                # Skip if charge is at same position as grid point
                if (r == np.zeros(2)).all():
                    continue

                # Calculate electric field using Coulomb's law
                e = charge / (4 * np.pi * eps0 * np.linalg.norm(r - r_prime)**3) * r

                # Add electric field component to total electric field
                e_x[i,j] += e[0]
                e_y[i,j] += e[1]

    return e_x, e_y

if __name__ == "__main__":

    # Define charge distribution
    charge_density = {(0,0): 1.0e-6, (1,1): -1.0e-6}

    # Set up grid
    origin = np.zeros(2)
    grid_size = np.array([0.1, 0.1])
    grid_dimensions = np.array([11,11])

    # Calculate electric field
    e_x, e_y = calc_electric_field(charge_density, origin, grid_size, grid_dimensions)

    # Plot electric field
    plt.quiver(np.arange(grid_dimensions[0]) * grid_size[0],
               np.arange(grid_dimensions[1]) * grid_size[1],
               e_x, e_y)
    plt.show()
有限元算法

有限元算法是一种更加复杂的算法,它可以处理任意形状的连续电荷分布。该算法通过将连续电荷分布分解成许多小部分,并在每个部分上进行局部计算,然后将结果组合起来得到最终结果。

有限元算法的主要步骤包括将连续电荷分布离散化,构建解析网格,计算电场和电势,并解决矩阵方程。有限元算法是一种强大的工具,可以通过改变网格分辨率来平衡计算精度和计算时间。

以下是Python代码,用于使用有限元算法计算电势和电场:

import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as spla
import matplotlib.pyplot as plt

eps0 = 8.854e-12  # Vacuum permittivity constant

def calc_phi_electric_field(charge_density, vertices, edges):
    """Calculate electric potential and field due to charge distribution using finite element method"""

    # Set up matrix equation A x = b
    num_vertices = vertices.shape[0]
    A = sp.lil_matrix((num_vertices, num_vertices))
    b = np.zeros(num_vertices)

    # Iterate over all edges and add contribution to matrix equation
    for edge in edges:
        v1, v2 = vertices[edge[0]], vertices[edge[1]]
        length = np.linalg.norm(v1 - v2)
        midpoint = (v1 + v2) / 2
        phi = 0

        # Iterate over all charges and add their contribution to electric potential
        for charge_pos, charge in charge_density.items():
            r = midpoint - np.array(charge_pos)
            potential = 1 / (4 * np.pi * eps0 * np.linalg.norm(r))
            phi += charge * potential

        # Calculate electric field using finite difference method
        x_diff = (v2 - v1) / length
        y_diff = np.array([-x_diff[1], x_diff[0]])
        e = - np.array([y_diff, -y_diff])
        e /= length

        # Add contribution to matrix equation
        for i, vertex in enumerate([edge[0], edge[1]]):
            A[vertex, vertex] += 1
            b[vertex] += phi if i == 0 else -phi
            for e_dir in range(2):
                for v_dir in range(2):
                    A[vertex, edges[edge[i]][e_dir]] -= e[e_dir, v_dir] if i ==0 else -e[e_dir, 1 - v_dir]

    # Solve matrix equation
    x = spla.spsolve(A.tocsr(), b)

    # Extract electric potentials and fields
    phi = {tuple(v): x[i] for i, v in enumerate(vertices)}
    e_x = {}
    e_y = {}

    for edge in edges:
        v1, v2 = vertices[edge[0]], vertices[edge[1]]
        x_diff = (v2 - v1) / np.linalg.norm(v2 - v1)
        y_diff = np.array([-x_diff[1], x_diff[0]])
        e = - x_diff * (phi[tuple(v2)] - phi[tuple(v1)])
        e += - y_diff * (phi[tuple(vertices[edges[edge[1]][1]])] - phi[tuple(vertices[edges[edge[0]][1]])])
        e_x[edge], e_y[edge] = e

    return phi, e_x, e_y

if __name__ == "__main__":

    # Define charge distribution
    charge_density = {(0,0): 1.0e-6, (1,1): -1.0e-6}

    # Set up mesh
    vertices = np.array([(i, j) for i in range(4) for j in range(4)])
    edges = {(i, j): [] for i in range(4*3) for j in range(i)}
    for i in range(4):
        for j in range(4):
            if j < 3:
                edges[(i*4 + j, i*4 + j + 1)].append((i*4 + j + 1,i* 4 + j))
                edges[(i*4 + j + 1, i*4 + j)].append((i*4 + j,i* 4 + j + 1))
            if i < 3:
                edges[(i*4 + j, (i+1)*4 + j)].append(((i+1)*4+j,i*4+j))
                edges[((i+1)*4 + j, i*4 + j)].append((i*4+j,(i+1)*4+j))

    # Calculate electric potential and field
    phi, e_x, e_y = calc_phi_electric_field(charge_density, vertices, edges)

    # Plot electric potential and field
    plt.tricontourf(vertices[:,0], vertices[:,1], list(phi.values()), 100)
    plt.quiver(vertices[:,0], vertices[:,1], list(e_x.values()), list(e_y.values()))
    plt.show()
结论

静电场算法和有限元算法是用于模拟连续电荷分布的两种常见算法。静电场算法较为简单,适用于处理简单形状。有限元算法更加复杂,但可以处理任意形状。在使用这些算法时,我们需要权衡计算精度和计算时间来选择适当的算法和分辨率。