📅  最后修改于: 2023-12-03 15:27:11.011000             🧑  作者: Mango
Fleury算法是一种用于寻找欧拉路径或欧拉电路的算法。它是由欧拉于1736年所提出的,并且被证明是正确的。
Fleury算法的主要思想是通过不断删除桥边(会导致分离)或割边(会导致不连通),来求解欧拉路径或电路。
def fleury_algorithm(graph, start_node):
"""
A function that implements the Fleury algorithm.
Parameters:
graph: A dictionary representing the graph. The keys are the nodes, and the values are lists of adjacent nodes.
start_node: A string representing the starting node.
Returns: A list of nodes, representing the eulerian path or circuit.
"""
# Initialize variables
path = []
visited_edges = set()
current_node = start_node
# While there are still edges to visit
while bool(graph[current_node]):
# Select an unvisited edge
unvisited_edges = [edge for edge in graph[current_node] if edge not in visited_edges]
# If all edges have been visited, end the algorithm
if not unvisited_edges:
break
# If there is only one unvisited edge, take it
elif len(unvisited_edges) == 1:
next_node = unvisited_edges[0]
# Find a non-bridge/non-cut edge
else:
for edge in unvisited_edges:
graph_copy = graph.copy()
graph_copy[current_node].remove(edge)
graph_copy[edge].remove(current_node)
if not is_bridge(graph_copy, current_node, edge):
next_node = edge
break
# Add the edge to the visited edges set
visited_edges.add(next_node)
# Add the new node to the path
if next_node[0] == current_node:
path.append(next_node[1])
current_node = next_node[1]
else:
path.append(next_node[0])
current_node = next_node[0]
# If there are no more edges to visit, end the algorithm
return path
def is_bridge(graph, node1, node2):
"""
A helper function that determines whether an edge is a bridge.
Parameters:
graph: A dictionary representing the graph. The keys are the nodes, and the values are lists of adjacent nodes.
node1: A string representing node1.
node2: A string representing node2.
Returns: True if the edge is a bridge, False otherwise.
"""
# Get the number of connected components before removing the edge
num_components_before = count_connected_components(graph)
# Remove the edge
graph_copy = graph.copy()
graph_copy[node1].remove(node2)
graph_copy[node2].remove(node1)
# Get the number of connected components after removing the edge
num_components_after = count_connected_components(graph_copy)
# If the number of connected components increased, the edge is a bridge
return num_components_after > num_components_before
def count_connected_components(graph):
"""
A helper function that counts the number of connected components in a graph.
Parameters:
graph: A dictionary representing the graph. The keys are the nodes, and the values are lists of adjacent nodes.
Returns: The number of connected components in the graph.
"""
visited = set()
num_components = 0
for node in graph:
if node not in visited:
num_components += 1
dfs(graph, node, visited)
return num_components
def dfs(graph, node, visited):
"""
A helper function that performs a depth-first search of a graph.
Parameters:
graph: A dictionary representing the graph. The keys are the nodes, and the values are lists of adjacent nodes.
node: A string representing the starting node.
visited: A set representing the nodes that have already been visited.
Returns: None.
"""
visited.add(node)
for neighbor in graph[node]:
if neighbor not in visited:
dfs(graph, neighbor, visited)
Fleury算法是一种简单而有效的欧拉路径/电路算法。它的核心思想是在未访问过的边中选择一个非割边/非桥边来行走,通过不断删除桥边或割边,最终得到欧拉路径/电路。