在Python中使用 NumPy 计算给定方阵的行列式
在Python中,可以使用 NumPy 包轻松计算方阵的行列式。该包用于对单维和多维数组执行数学计算。 numpy.linalg是 NumPy 包的一个重要模块,用于线性代数。
我们可以使用 numpy.linalg 模块的det()函数来找出方阵的行列式。
Syntax: numpy.linalg.det(array)
Parameters:
array(…, M, M) array_like: Input array to calculate determinants for.
Returns:
det(…) array_like: Determinant of array.
示例 1: 2X2 矩阵的行列式。
Python3
# Importing libraries
import numpy as np
from numpy import linalg
# Creating a 2X2 matrix
matrix = np.array([[1, 0], [3, 6]])
print("Original 2-D matrix")
print(matrix)
# Output
print("Determinant of the 2-D matrix:")
print(np.linalg.det(matrix))
Python3
# Importing libraries
import numpy as np
from numpy import linalg
# Creating a 3X3 matrix
matrix = np.array([[1, 0, 1], [1, 2, 0], [4, 6, 2]])
print("Original 3-D matrix")
print(matrix)
# Output
print("Determinant of the 3-D matrix:")
print(np.linalg.det(matrix))
Python3
# Importing libraries
import numpy as np
from numpy import linalg
# Creating a 4X4 matrix
matrix = np.array([[1, 0, 1, 8], [1, 2, 0, 3], [4, 6, 2, 6], [0, 3, 6, 4]])
print("Original 4-D matrix")
print(matrix)
# Output
print("Determinant of the 4-D matrix:")
print(np.linalg.det(matrix))
输出:
Original 2-D matrix
[[1 0]
[3 6]]
Determinant of the 2-D matrix:
6.0
示例 2: 3X3 矩阵的行列式
Python3
# Importing libraries
import numpy as np
from numpy import linalg
# Creating a 3X3 matrix
matrix = np.array([[1, 0, 1], [1, 2, 0], [4, 6, 2]])
print("Original 3-D matrix")
print(matrix)
# Output
print("Determinant of the 3-D matrix:")
print(np.linalg.det(matrix))
输出:
Original 3-D matrix
[[1 0 1]
[1 2 0]
[4 6 2]]
Determinant of the 3-D matrix:
2.0
示例 3: 4X4 矩阵的行列式
Python3
# Importing libraries
import numpy as np
from numpy import linalg
# Creating a 4X4 matrix
matrix = np.array([[1, 0, 1, 8], [1, 2, 0, 3], [4, 6, 2, 6], [0, 3, 6, 4]])
print("Original 4-D matrix")
print(matrix)
# Output
print("Determinant of the 4-D matrix:")
print(np.linalg.det(matrix))
输出:
Original 4-D matrix
[[1 0 1 8]
[1 2 0 3]
[4 6 2 6]
[0 3 6 4]]
Determinant of the 4-D matrix:
188.0