Mahotas – 条件侵蚀图像
在本文中,我们将了解如何在 mahotas 中对图像进行条件腐蚀。侵蚀是形态学图像处理中的两个基本操作之一(另一个是膨胀),所有其他形态学操作都基于该操作。它最初是为二值图像定义的,后来扩展到灰度图像,随后扩展到完整的格子。
在本教程中,我们将使用“lena”图像,下面是加载它的命令。
mahotas.demos.load('lena')
下面是莉娜的图片
In order to do this we will use mahotas.cerode method
Syntax : mahotas.cerode(img, c_grey)
Argument : It takes image object, conditional image as argument
Return : It returns image object
注意:输入图像应被过滤或应加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
下面是实现
Python3
# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
# loading image
img = mahotas.demos.load('lena')
# grey image
g = img[:, :, 1]
# multiplying grey image values
g = g * 3
# filtering image
img = img.max(2)
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# showing image
imshow(img)
show()
# eroding image using conditional grey image
new_img = mahotas.cerode(img, g)
# showing eroded image
print("Eroded Image")
imshow(new_img)
show()
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
# loading image
img = mahotas.imread('dog_image.png')
# getting grey image
g = img[:, :, 0]
# multiplying grey image values
g = g * 2
# filtering image
img = img[:, :, 0]
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# showing image
imshow(img)
show()
# eroding image using conditional grey image
new_img = mahotas.cerode(img, g)
# showing eroded image
print("Eroded Image")
imshow(new_img)
show()
输出 :
Image threshold using Otsu Method
Eroded Image
另一个例子
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
# loading image
img = mahotas.imread('dog_image.png')
# getting grey image
g = img[:, :, 0]
# multiplying grey image values
g = g * 2
# filtering image
img = img[:, :, 0]
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# showing image
imshow(img)
show()
# eroding image using conditional grey image
new_img = mahotas.cerode(img, g)
# showing eroded image
print("Eroded Image")
imshow(new_img)
show()
输出 :
Image threshold using Otsu Method
Eroded Image