Mahotas – 图像的条件分水岭
在本文中,我们将了解如何在 mahotas 中对图像进行条件分水岭。在图像处理的研究中,分水岭是在灰度图像上定义的变换。这个名字隐喻地指的是一个地质分水岭或排水沟,它将相邻的流域分隔开来。
在本教程中,我们将使用“Lena”图像,下面是加载它的命令。
mahotas.demos.load('lena')
下面是莉娜的图片
In order to do this we will use mahotas.cwatershed method
Syntax : mahotas.cwatershed(img, marker)
Argument : It takes image object and labeled marker as argument
Return : It returns image object
注意:输入图像应被过滤或加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
下面是实现
Python3
# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
# loading image
img = mahotas.demos.load('lena')
# filtering image
img = img.max(2)
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# creating a labelled image
marker, n_nucleus = mahotas.label(img)
# showing image
imshow(img)
show()
# watershed of image
new_img = mahotas.cwatershed(img, marker)
print("CWatershed Image")
# showing image
imshow(new_img)
show()
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# showing image
imshow(img)
show()
# creating a labelled image
marker, n_nucleus = mahotas.label(img)
# watershed of image
new_img = mahotas.cwatershed(img, marker)
print("CWatershed Image")
# showing image
imshow(new_img)
show()
输出 :
Image threshold using Otsu Method
CWatershed Image
另一个例子
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
# otsu method
T_otsu = mahotas.otsu(img)
# image values should be greater than otsu value
img = img > T_otsu
print("Image threshold using Otsu Method")
# showing image
imshow(img)
show()
# creating a labelled image
marker, n_nucleus = mahotas.label(img)
# watershed of image
new_img = mahotas.cwatershed(img, marker)
print("CWatershed Image")
# showing image
imshow(new_img)
show()
输出:
Image threshold using Otsu Method
CWatershed Image