股票买卖以最大化利润的Python程序
每天的股票成本以数组的形式给出,找出你在那些日子里通过买卖可以获得的最大利润。例如,如果给定数组是 {100, 180, 260, 310, 40, 535, 695},则可以通过在第 0 天买入,在第 3 天卖出来获得最大利润。再次在第 4 天买入并在第 6 天卖出. 如果给定的价格数组按降序排序,则根本无法赚取利润。
幼稚的方法:一种简单的方法是尝试在获利的每一天买入股票并卖出,并不断更新迄今为止的最大利润。
下面是上述方法的实现:
Python3
# Python3 implementation of the approach
# Function to return the maximum profit
# that can be made after buying and
# selling the given stocks
def maxProfit(price, start, end):
# If the stocks can't be bought
if (end <= start):
return 0;
# Initialise the profit
profit = 0;
# The day at which the stock
# must be bought
for i in range(start, end, 1):
# The day at which the
# stock must be sold
for j in range(i+1, end+1):
# If buying the stock at ith day and
# selling it at jth day is profitable
if (price[j] > price[i]):
# Update the current profit
curr_profit = price[j] - price[i] +
maxProfit(price,
start, i - 1)+
maxProfit(price,
j + 1, end);
# Update the maximum profit so far
profit = max(profit, curr_profit);
return profit;
# Driver code
if __name__ == '__main__':
price = [100, 180, 260,
310, 40, 535, 695];
n = len(price);
print(maxProfit(price, 0, n - 1));
# This code is contributed by Rajput-Ji
Python3
# Python3 Program to find
# best buying and selling days
# This function finds the buy sell
# schedule for maximum profit
def stockBuySell(price, n):
# Prices must be given for at
# least two days
if (n == 1):
return
# Traverse through given price array
i = 0
while (i < (n - 1)):
# Find Local Minima
# Note that the limit is (n-2) as
# we are comparing present element
# to the next element
while ((i < (n - 1)) and
(price[i + 1] <= price[i])):
i += 1
# If we reached the end, break
# as no further solution possible
if (i == n - 1):
break
# Store the index of minima
buy = i
i += 1
# Find Local Maxima
# Note that the limit is (n-1) as we are
# comparing to previous element
while ((i < n) and
(price[i] >= price[i - 1])):
i += 1
# Store the index of maxima
sell = i - 1
print("Buy on day: ",buy," ",
"Sell on day: ",sell)
# Driver code
# Stock prices on consecutive days
price = [100, 180, 260,
310, 40, 535, 695]
n = len(price)
# Function call
stockBuySell(price, n)
# This is code contributed by SHUBHAMSINGH10
Python3
# Python3 program for the
# above approach
def max_profit(prices: list,
days: int) -> int:
profit = 0
for i in range(1, days):
# Checks if elements are adjacent
# and in increasing order
if prices[i] > prices[i-1]:
# Difference added to 'profit'
profit += prices[i] - prices[i-1]
return profit
# Driver Code
if __name__ == '__main__':
# Stock prices on consecutive days
prices = [100, 180, 260,
310, 40, 535, 695]
# Function call
profit = max_profit(prices, len(prices))
print(profit)
# This code is contributed by vishvofficial.
输出:
865
有效的方法:如果我们只允许买卖一次,那么我们可以使用以下算法。两个元素之间的最大差异。在这里,我们可以多次买卖。
下面是这个问题的算法。
- 找到局部最小值并将其存储为起始索引。如果不存在,则返回。
- 找到局部最大值。并将其存储为结束索引。如果我们到达结尾,则将结尾设置为结束索引。
- 更新解决方案(增加买卖对的计数)
- 如果没有到达终点,重复上述步骤。
Python3
# Python3 Program to find
# best buying and selling days
# This function finds the buy sell
# schedule for maximum profit
def stockBuySell(price, n):
# Prices must be given for at
# least two days
if (n == 1):
return
# Traverse through given price array
i = 0
while (i < (n - 1)):
# Find Local Minima
# Note that the limit is (n-2) as
# we are comparing present element
# to the next element
while ((i < (n - 1)) and
(price[i + 1] <= price[i])):
i += 1
# If we reached the end, break
# as no further solution possible
if (i == n - 1):
break
# Store the index of minima
buy = i
i += 1
# Find Local Maxima
# Note that the limit is (n-1) as we are
# comparing to previous element
while ((i < n) and
(price[i] >= price[i - 1])):
i += 1
# Store the index of maxima
sell = i - 1
print("Buy on day: ",buy," ",
"Sell on day: ",sell)
# Driver code
# Stock prices on consecutive days
price = [100, 180, 260,
310, 40, 535, 695]
n = len(price)
# Function call
stockBuySell(price, n)
# This is code contributed by SHUBHAMSINGH10
输出:
Buy on day: 0 Sell on day: 3
Buy on day: 4 Sell on day: 6
时间复杂度:外循环一直运行到我变成 n-1。内部两个循环在每次迭代中增加 I 的值。所以整体时间复杂度是 O(n)
谷峰方法:
在这种方法中,我们只需要找到下一个更大的元素并将其从当前元素中减去,这样差异就会不断增加,直到达到最小值。如果序列是递减序列,则可能的最大利润为 0。
Python3
# Python3 program for the
# above approach
def max_profit(prices: list,
days: int) -> int:
profit = 0
for i in range(1, days):
# Checks if elements are adjacent
# and in increasing order
if prices[i] > prices[i-1]:
# Difference added to 'profit'
profit += prices[i] - prices[i-1]
return profit
# Driver Code
if __name__ == '__main__':
# Stock prices on consecutive days
prices = [100, 180, 260,
310, 40, 535, 695]
# Function call
profit = max_profit(prices, len(prices))
print(profit)
# This code is contributed by vishvofficial.
输出:
865
时间复杂度:O(n)
辅助空间: O(1)
请参阅完整的股票买卖以最大化利润的文章了解更多详情!