二叉树的两个叶子之间的最小和路径
给定一棵二叉树,其中每个节点元素都包含一个数字。任务是找到从一个叶节点到另一个叶节点的最小可能总和。
如果根的一侧为空,则函数应返回负无穷大。
例子:
Input :
4
/ \
5 -6
/ \ / \
2 -3 1 8
Output : 1
The minimum sum path between two leaf nodes is:
-3 -> 5 -> 4 -> -6 -> 1
Input :
3
/ \
2 4
/ \
-5 1
Output : -2
方法:这个想法是在递归调用中保持两个值:
- 以当前节点为根的子树的最小根到叶路径和。
- 叶之间的最小路径和。
对于每个访问过的节点 X,我们在 X 的左右子树中找到最小根到叶和。我们将这两个值与 X 的数据相加,并将和与当前最小路径和进行比较。
下面是上述方法的实现:
C++
// C++ program to find minimum path sum
// between two leaves of a binary tree
#include
using namespace std;
// A binary tree node
struct Node {
int data;
struct Node* left;
struct Node* right;
};
// Utility function to allocate memory
// for a new node
struct Node* newNode(int data)
{
struct Node* node = new (struct Node);
node->data = data;
node->left = node->right = NULL;
return (node);
}
// A utility function to find the minimum sum between
// any two leaves. This function calculates two values:
// 1. Minimum path sum between two leaves which is stored
// in result and,
// 2. The minimum root to leaf path sum which is returned.
// If one side of root is empty, then it returns INT_MIN
int minPathSumUtil(struct Node* root, int& result)
{
// Base cases
if (root == NULL)
return 0;
if (root->left == NULL && root->right == NULL)
return root->data;
// Find minimum sum in left and right sub tree. Also
// find minimum root to leaf sums in left and right
// sub trees and store them in ls and rs
int ls = minPathSumUtil(root->left, result);
int rs = minPathSumUtil(root->right, result);
// If both left and right children exist
if (root->left && root->right) {
// Update result if needed
result = min(result, ls + rs + root->data);
// Return minimum possible value for root being
// on one side
return min(ls + root->data, rs + root->data);
}
// If any of the two children is empty, return
// root sum for root being on one side
if (root->left == NULL)
return rs + root->data;
else
return ls + root->data;
}
// Function to return the minimum
// sum path between two leaves
int minPathSum(struct Node* root)
{
int result = INT_MAX;
minPathSumUtil(root, result);
return result;
}
// Driver code
int main()
{
struct Node* root = newNode(4);
root->left = newNode(5);
root->right = newNode(-6);
root->left->left = newNode(2);
root->left->right = newNode(-3);
root->right->left = newNode(1);
root->right->right = newNode(8);
cout << minPathSum(root);
return 0;
}
Java
// Java program to find minimum path sum
// between two leaves of a binary tree
class GFG
{
// A binary tree node
static class Node
{
int data;
Node left;
Node right;
};
// Utility function to allocate memory
// for a new node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
static int result;
// A utility function to find the minimum sum between
// any two leaves. This function calculates two values:
// 1. Minimum path sum between two leaves which is stored
// in result and,
// 2. The minimum root to leaf path sum which is returned.
// If one side of root is empty, then it returns INT_MIN
static int minPathSumUtil( Node root)
{
// Base cases
if (root == null)
return 0;
if (root.left == null && root.right == null)
return root.data;
// Find minimum sum in left and right sub tree. Also
// find minimum root to leaf sums in left and right
// sub trees and store them in ls and rs
int ls = minPathSumUtil(root.left);
int rs = minPathSumUtil(root.right);
// If both left and right children exist
if (root.left != null && root.right != null)
{
// Update result if needed
result = Math.min(result, ls + rs + root.data);
// Return minimum possible value for root being
// on one side
return Math.min(ls + root.data, rs + root.data);
}
// If any of the two children is empty, return
// root sum for root being on one side
if (root.left == null)
return rs + root.data;
else
return ls + root.data;
}
// Function to return the minimum
// sum path between two leaves
static int minPathSum( Node root)
{
result = Integer.MAX_VALUE;
minPathSumUtil(root);
return result;
}
// Driver code
public static void main(String args[])
{
Node root = newNode(4);
root.left = newNode(5);
root.right = newNode(-6);
root.left.left = newNode(2);
root.left.right = newNode(-3);
root.right.left = newNode(1);
root.right.right = newNode(8);
System.out.print(minPathSum(root));
}
}
// This code is contributed by Arnab Kundu
Python3
# Python3 program to find minimum path sum
# between two leaves of a binary tree
# Tree node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Utility function to allocate memory
# for a new node
def newNode( data):
node = Node(0)
node.data = data
node.left = node.right = None
return (node)
result = -1
# A utility function to find the
# minimum sum between any two leaves.
# This function calculates two values:
# 1. Minimum path sum between two leaves
# which is stored in result and,
# 2. The minimum root to leaf path sum
# which is returned.
# If one side of root is empty,
# then it returns INT_MIN
def minPathSumUtil(root) :
global result
# Base cases
if (root == None):
return 0
if (root.left == None and
root.right == None) :
return root.data
# Find minimum sum in left and right sub tree.
# Also find minimum root to leaf sums in
# left and right sub trees and store them
# in ls and rs
ls = minPathSumUtil(root.left)
rs = minPathSumUtil(root.right)
# If both left and right children exist
if (root.left != None and
root.right != None) :
# Update result if needed
result = min(result, ls +
rs + root.data)
# Return minimum possible value for
# root being on one side
return min(ls + root.data,
rs + root.data)
# If any of the two children is empty,
# return root sum for root being on one side
if (root.left == None) :
return rs + root.data
else:
return ls + root.data
# Function to return the minimum
# sum path between two leaves
def minPathSum( root):
global result
result = 9999999
minPathSumUtil(root)
return result
# Driver code
root = newNode(4)
root.left = newNode(5)
root.right = newNode(-6)
root.left.left = newNode(2)
root.left.right = newNode(-3)
root.right.left = newNode(1)
root.right.right = newNode(8)
print(minPathSum(root))
# This code is contributed
# by Arnab Kundu
C#
// C# program to find minimum path sum
// between two leaves of a binary tree
using System;
class GFG
{
// A binary tree node
public class Node
{
public int data;
public Node left;
public Node right;
};
// Utility function to allocate memory
// for a new node
static Node newNode(int data)
{
Node node = new Node();
node.data = data;
node.left = node.right = null;
return (node);
}
static int result;
// A utility function to find the minimum sum between
// any two leaves. This function calculates two values:
// 1. Minimum path sum between two leaves which is stored
// in result and,
// 2. The minimum root to leaf path sum which is returned.
// If one side of root is empty, then it returns INT_MIN
static int minPathSumUtil( Node root)
{
// Base cases
if (root == null)
return 0;
if (root.left == null && root.right == null)
return root.data;
// Find minimum sum in left and right sub tree. Also
// find minimum root to leaf sums in left and right
// sub trees and store them in ls and rs
int ls = minPathSumUtil(root.left);
int rs = minPathSumUtil(root.right);
// If both left and right children exist
if (root.left != null && root.right != null)
{
// Update result if needed
result = Math.Min(result, ls + rs + root.data);
// Return minimum possible value for root being
// on one side
return Math.Min(ls + root.data, rs + root.data);
}
// If any of the two children is empty, return
// root sum for root being on one side
if (root.left == null)
return rs + root.data;
else
return ls + root.data;
}
// Function to return the minimum
// sum path between two leaves
static int minPathSum( Node root)
{
result = int.MaxValue;
minPathSumUtil(root);
return result;
}
// Driver code
public static void Main(String []args)
{
Node root = newNode(4);
root.left = newNode(5);
root.right = newNode(-6);
root.left.left = newNode(2);
root.left.right = newNode(-3);
root.right.left = newNode(1);
root.right.right = newNode(8);
Console.Write(minPathSum(root));
}
}
// This code has been contributed by 29AjayKumar
Javascript
输出:
1
时间复杂度:O(N)
辅助空间: O(N)