通过可视化了解不同的箱线图
让我们看看箱线图如何以不同的方式发挥作用。
加载库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
准备数据
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low), 0)
print (data)
输出 :
[ 35.94741387 98.49500418 37.2487085 93.19618571 6.34263359
49.10532713 53.86860981 58.59362227 36.96325746 62.27757508
65.44118887 73.79592156 95.15399991 79.94114982 16.64273792
88.35737021 14.84581489 0.76759854 91.61486239 16.03299406
73.12589808 8.63636833 33.25606049 46.05712779 81.60993207
95.0390852 43.94169286 2.96961334 38.21446718 12.15763603
8.79716665 61.18542821 70.93695599 48.90136391 54.6233727
77.27315695 14.63597135 68.22763576 52.23548596 14.34491407
55.53669512 93.63144771 15.66242535 72.47360029 67.82493039
0.34568417 63.39884046 0.46750944 70.39370656 83.42420235
50. 50. 50. 50. 50.
50. 50. 50. 50. 50.
50. 50. 50. 50. 50.
50. 50. 50. 50. 50.
50. 50. 50. 50. 50.
134.61039367 133.42423423 132.77938791 157.75858139 105.99552891
159.1713425 190.9938417 118.33354777 142.13310114 113.54291724
-32.73427425 -34.92884623 -49.28116565 -15.24891626 -14.57460618
-9.48256045 -46.74250253 -36.3992666 -88.14980994 -64.49187441]
代码 #1:正态箱线图
plt.figure(figsize = (7, 5))
plt.boxplot(data)
plt.show()
输出 :
代码 #2:缺口箱线图
plt.figure(figsize = (7, 5))
plt.boxplot(data, 1)
plt.show()
输出 :
代码 #3:显示异常值的箱线图
plt.figure(figsize = (7, 5))
plt.boxplot(data, 0, 'gD')
plt.show()
输出 :
代码 #4:没有异常值的箱线图
plt.figure(figsize = (7, 5))
plt.boxplot(data, 0, '')
plt.show()
输出 :
代码 #5:水平箱线图
plt.figure(figsize = (7, 5))
plt.boxplot(data, 0, 'rs', 0)
plt.show()
输出 :
代码 #6:水平箱线图改变晶须长度
plt.figure(figsize = (7, 5))
plt.boxplot(data, 0, 'rs', 0, 0.75)
plt.show()
输出 :