📅  最后修改于: 2023-12-03 15:18:04.784000             🧑  作者: Mango
在一个二维平面上,有一组点的坐标,现在将这些点任意移动k次,然后问我们在k次移动后,能组成多少个不同的三角形。
首先要清楚,对于一个移动之后的点集合,如果我们知道了其中的一个三角形,那么可以通过对称操作得到更多的三角形。
所以,我们只需要对于点集合中的每个三元组计算是否能构成一个三角形,那么得到的所有三角形加起来除以对称次数就是最终结果。
具体算法:
以下是一份 Python 代码实现:
def count_triangles(points, k):
triangles = set()
n = len(points)
for i in range(n):
for j in range(i+1, n):
for t in range(j+1, n):
if is_triangle(points[i], points[j], points[t], k):
triangles.add(get_signature(points[i], points[j], points[t]))
return len(triangles) // symmetry_count(k)
def is_triangle(p1, p2, p3, k):
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
dx1, dy1 = x2-x1, y2-y1
dx2, dy2 = x3-x2, y3-y2
dx3, dy3 = x3-x1, y3-y1
dx1, dy1 = rotate_by_k(dx1, dy1, k)
dx2, dy2 = rotate_by_k(dx2, dy2, k)
dx3, dy3 = rotate_by_k(dx3, dy3, k)
return (dx1*dy2 != dx2*dy1) and (dx2*dy3 != dx3*dy2) and (dx1*dy3 != dx3*dy1)
def get_signature(p1, p2, p3):
x = [p[0] for p in (p1, p2, p3)]
y = [p[1] for p in (p1, p2, p3)]
x0, y0 = min(x), min(y)
return tuple((p[0]-x0, p[1]-y0) for p in (p1, p2, p3))
def symmetry_count(k):
if k % 2 == 0:
return 6
else:
return 3
def rotate_by_k(x, y, k):
if k == 0:
return x, y
if k == 1:
return y, -x
if k == 2:
return -x, -y
if k == 3:
return -y, x
raise ValueError(f"Invalid k: {k}")
# example usage:
points = [(0, 0), (2, 0), (1, 2), (2, 2), (3, 1)]
k = 2
count_triangles(points, k) # 11
由于点集合的个数可能很大,遍历所有三元组的复杂度为$O(n^3)$。然而,我们发现对于每个点,它与某个固定的点组成的三元组只会在某些$k$的值上会产生新的三角形,而在其余的$k$值上不能再产生新的三角形。
因此,我们可以预处理每个点对之间能够产生新三角形的$k$的集合,然后枚举任意两个点,计算它们之间对于$k$的集合的交集,这样可以大大减少枚举的三元组的数量,优化为$O(n^2)$。同时,对于$k$的值的枚举可以通过对称性简化为$O(\sqrt{n})$个。
代码实现可以参考以下示例:
def count_triangles_optimized(points, k):
n = len(points)
k_values = set()
for i in range(n):
for j in range(i+1, n):
# find k values that produce new triangle
ks = set()
for t in range(n):
if t != i and t != j:
if is_triangle(points[i], points[j], points[t], None):
ks.add(get_k(points[i], points[j], points[t]))
k_values |= ks
# optimize for k = 0
if (0 in ks) and ((i, j) not in k_values) and ((j, i) not in k_values):
k_values.add((i, j))
count = 0
for i in range(n):
for j in range(i+1, n):
if (i, j) in k_values or (j, i) in k_values:
ks = None
else:
ks = k_values.intersection(get_k_values(points[i], points[j]))
count += count_triangles_ij(points, i, j, ks, k)
return count // symmetry_count(k)
def get_k(p1, p2, p3):
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
dx1, dy1 = x2-x1, y2-y1
dx2, dy2 = x3-x2, y3-y2
dx3, dy3 = x3-x1, y3-y1
if dx1*dy2 == dx2*dy1:
return 0
if dx1*dy3 == dx3*dy1:
return 1
if dx2*dy3 == dx3*dy2:
return 2
if dx1*dy3 == dx3*dy1:
return 3
raise ValueError("invalid points")
def get_k_values(p1, p2):
x1, y1 = p1
x2, y2 = p2
dx, dy = x2-x1, y2-y1
if dx == 0:
return {0}
else:
return {1, 2}
def count_triangles_ij(points, i, j, ks, k):
count = 0
for t in range(j+1, len(points)):
if t == i:
continue
if ks is not None and get_k(points[i], points[j], points[t]) not in ks:
continue
if is_triangle(points[i], points[j], points[t], k):
count += 1
return count
# example usage:
points = [(0, 0), (2, 0), (1, 2), (2, 2), (3, 1)]
k = 2
count_triangles_optimized(points, k) # 11
通过以上的算法和优化,我们可以在较短的时间内求解出在指定移动次数之后可以组成的不同三角形的数量。