给定 2D 平面上的 n个点列表,任务是找到距离原点 O(0, 0) 最近的 K (k < n) 个点。
注意:点 P(x, y) 和 O(0, 0) 之间的距离使用标准欧几里得距离。
例子:
Input: [(1, 0), (2, 1), (3, 6), (-5, 2), (1, -4)], K = 3
Output: [(1, 0), (2, 1), (1, -4)]
Explanation:
Square of Distances of points from origin are
(1, 0) : 1
(2, 1) : 5
(3, 6) : 45
(-5, 2) : 29
(1, -4) : 17
Hence for K = 3, the closest 3 points are (1, 0), (2, 1) & (1, -4).
Input: [(1, 3), (-2, 2)], K = 1
Output: [(-2, 2)]
Explanation:
Square of Distances of points from origin are
(1, 3) : 10
(-2, 2) : 8
Hence for K = 1, the closest point is (-2, 2).
使用基于距离排序的方法:本文解释了这种方法。
使用优先队列进行比较的方法:解决上述问题的主要思想是将点的坐标存储在成对的优先队列中,根据点到原点的距离。为了将最大优先级分配给离原点最远的点,我们使用了 Priority Queue 中的 Comparator 类。然后打印优先级队列的前 K 个元素。
下面是上述方法的实现:
C++
// C++ implementation to find the K
// closest points to origin
// using Priority Queue
#include
using namespace std;
// Comparator class to assign
// priority to coordinates
class comp {
public:
bool operator()(pair a,
pair b)
{
int x1 = a.first * a.first;
int y1 = a.second * a.second;
int x2 = b.first * b.first;
int y2 = b.second * b.second;
// return true if distance
// of point 1 from origin
// is greater than distance of
// point 2 from origin
return (x1 + y1) > (x2 + y2);
}
};
// Function to find the K closest points
void kClosestPoints(int x[], int y[],
int n, int k)
{
// Create a priority queue
priority_queue,
vector >,
comp>
pq;
// Pushing all the points
// in the queue
for (int i = 0; i < n; i++) {
pq.push(make_pair(x[i], y[i]));
}
// Print the first K elements
// of the queue
for (int i = 0; i < k; i++) {
// Store the top of the queue
// in a temporary pair
pair p = pq.top();
// Print the first (x)
// and second (y) of pair
cout << p.first << " "
<< p.second << endl;
// Remove top element
// of priority queue
pq.pop();
}
}
// Driver code
int main()
{
// x coordinate of points
int x[] = { 1, -2 };
// y coordinate of points
int y[] = { 3, 2 };
int K = 1;
int n = sizeof(x) / sizeof(x[0]);
kClosestPoints(x, y, n, K);
return 0;
}
Java
// Java implementation to find the K
// closest points to origin
// using Priority Queue
import java.util.*;
// Point class to store
// a point
class Pair implements Comparable
{
int first, second;
Pair(int a, int b)
{
first = a;
second = b;
}
public int compareTo(Pair o)
{
int x1 = first * first;
int y1 = second * second;
int x2 = o.first * o.first;
int y2 = o.second * o.second;
return (x1 + y1) - (x2 + y2);
}
}
class GFG{
// Function to find the K closest points
static void kClosestPoints(int x[], int y[],
int n, int k)
{
// Create a priority queue
PriorityQueue pq = new PriorityQueue<>();
// Pushing all the points
// in the queue
for(int i = 0; i < n; i++)
{
pq.add(new Pair(x[i], y[i]));
}
// Print the first K elements
// of the queue
for(int i = 0; i < k; i++)
{
// Remove the top of the queue
// and store in a temporary pair
Pair p = pq.poll();
// Print the first (x)
// and second (y) of pair
System.out.println(p.first +
" " + p.second);
}
}
// Driver code
public static void main(String[] args)
{
// x coordinate of points
int x[] = { 1, -2 };
// y coordinate of points
int y[] = { 3, 2 };
int K = 1;
int n = x.length;
kClosestPoints(x, y, n, K);
}
}
// This code is contributed by jrishabh99
-2 2
时间复杂度: O(n + K * log(n))
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live