📜  由有向无环图给出的每项作业完成所需的最短时间

📅  最后修改于: 2021-09-07 02:15:36             🧑  作者: Mango

给定一个有V个顶点和E 条边的有向无环图,其中每条边{U, V}代表作业UV,这样作业V只能在作业U完成后开始。任务是确定每个作业完成所需的最短时间,其中每个作业需要单位时间才能完成。

例子:

方法:只有作为作业先决条件的所有作业都完成后,才能开始作业。因此,想法是对给定的网络使用拓扑排序。以下是步骤:

  1. 完成不依赖任何其他作业的作业。
  2. 创建一个数组inDegree[]来存储给定网络中每个节点的依赖节点的计数。
  3. 初始化一个队列并推送所有inDegree[]为 0 的顶点。
  4. 将计时器初始化为 1 并存储当前队列大小(比如size )并执行以下操作:
    • 从队列中弹出节点,直到大小为0并将该节点的完成时间更新到计时器
    • 当从队列中弹出节点(比如节点U )时,减少连接到它的每个节点的inDegree
    • 如果上述步骤中任何节点的inDegree0 ,则将该节点插入队列。
    • 在所有上述步骤之后增加计时器。
  5. 上一步遍历每个节点后,打印所有节点的完成时间。

下面是上述方法的实现:

C++
// C++ program for the above approach
#include 
using namespace std;
#define maxN 100000
 
// Adjacency List to store the graph
vector graph[maxN];
 
// Array to store the in-degree of node
int indegree[maxN];
 
// Array to store the time in which
// the job i can be done
int job[maxN];
 
// Function to add directed edge
// between two vertices
void addEdge(int u, int v)
{
    // Insert edge from u to v
    graph[u].push_back(v);
 
    // Increasing the indegree
    // of vertex v
    indegree[v]++;
}
 
// Function to find the minimum time
// needed by each node to get the task
void printOrder(int n, int m)
{
    // Find the topo sort order
    // using the indegree approach
 
    // Queue to store the
    // nodes while processing
    queue q;
 
    // Pushing all the vertex in the
    // queue whose in-degree is 0
 
    // Update the time of the jobs
    // who don't require any job to
    // be completed before this job
    for (int i = 1; i <= n; i++) {
        if (indegree[i] == 0) {
            q.push(i);
            job[i] = 1;
        }
    }
 
    // Iterate until queue is empty
    while (!q.empty()) {
 
        // Get front element of queue
        int cur = q.front();
 
        // Pop the front element
        q.pop();
 
        for (int adj : graph[cur]) {
 
            // Decrease in-degree of
            // the current node
            indegree[adj]--;
 
            // Push its adjacent elements
            if (indegree[adj] == 0)
                job[adj] = job[cur] + 1;
            q.push(adj);
        }
    }
 
    // Print the time to complete
    // the job
    for (int i = 1; i <= n; i++)
        cout << job[i] << " ";
    cout << "\n";
}
 
// Driver Code
int main()
{
    // Given Nodes N and edges M
    int n, m;
    n = 10;
    m = 13;
 
    // Given Directed Edges of graph
    addEdge(1, 3);
    addEdge(1, 4);
    addEdge(1, 5);
    addEdge(2, 3);
    addEdge(2, 8);
    addEdge(2, 9);
    addEdge(3, 6);
    addEdge(4, 6);
    addEdge(4, 8);
    addEdge(5, 8);
    addEdge(6, 7);
    addEdge(7, 8);
    addEdge(8, 10);
 
    // Function Call
    printOrder(n, m);
    return 0;
}


Java
// Java program for the above approach
import java.util.*;
 
class GFG{
     
static final int maxN = 100000;
 
// Adjacency List to store the graph
@SuppressWarnings("unchecked")
static Vector []graph = new Vector[maxN];
 
// Array to store the in-degree of node
static int []indegree = new int[maxN];
 
// Array to store the time in which
// the job i can be done
static int []job = new int[maxN];
 
// Function to add directed edge
// between two vertices
static void addEdge(int u, int v)
{
     
    // Insert edge from u to v
    graph[u].add(v);
 
    // Increasing the indegree
    // of vertex v
    indegree[v]++;
}
 
// Function to find the minimum time
// needed by each node to get the task
static void printOrder(int n, int m)
{
     
    // Find the topo sort order
    // using the indegree approach
 
    // Queue to store the
    // nodes while processing
    Queue q = new LinkedList<>();
     
    // Pushing all the vertex in the
    // queue whose in-degree is 0
 
    // Update the time of the jobs
    // who don't require any job to
    // be completed before this job
    for(int i = 1; i <= n; i++)
    {
        if (indegree[i] == 0)
        {
            q.add(i);
            job[i] = 1;
        }
    }
 
    // Iterate until queue is empty
    while (!q.isEmpty())
    {
 
        // Get front element of queue
        int cur = q.peek();
 
        // Pop the front element
        q.remove();
 
        for(int adj : graph[cur])
        {
             
            // Decrease in-degree of
            // the current node
            indegree[adj]--;
 
            // Push its adjacent elements
            if (indegree[adj] == 0){
                job[adj] = 1 + job[cur];
                q.add(adj);
            }
        }
    }
 
    // Print the time to complete
    // the job
    for(int i = 1; i <= n; i++)
        System.out.print(job[i] + " ");
    System.out.print("\n");
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Nodes N and edges M
    int n, m;
    n = 10;
    m = 13;
     
    for(int i = 0; i < graph.length; i++)
        graph[i] = new Vector();
         
    // Given directed edges of graph
    addEdge(1, 3);
    addEdge(1, 4);
    addEdge(1, 5);
    addEdge(2, 3);
    addEdge(2, 8);
    addEdge(2, 9);
    addEdge(3, 6);
    addEdge(4, 6);
    addEdge(4, 8);
    addEdge(5, 8);
    addEdge(6, 7);
    addEdge(7, 8);
    addEdge(8, 10);
 
    // Function call
    printOrder(n, m);
}
}
 
// This code is contributed by Amit Katiyar


Python3
# Python3 program for the above approach
from collections import defaultdict
 
# Class to represent a graph
class Graph:
     
    def __init__(self, vertices, edges):
         
        # Dictionary containing adjacency List
        self.graph = defaultdict(list)
         
        # No. of vertices
        self.n = vertices 
         
        # No. of edges
        self.m = edges 
         
    # Function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)
     
    # Function to find the minimum time
    # needed by each node to get the task
    def printOrder(self, n, m):
       
        # Create a vector to store indegrees of all
        # vertices. Initialize all indegrees as 0.
        indegree = [0] * (self.n + 1)
         
        # Traverse adjacency lists to fill indegrees
        # of vertices. This step takes O(V + E) time
        for i in self.graph:
            for j in self.graph[i]:
                indegree[j] += 1
                 
        # Array to store the time in which
        # the job i can be done
        job = [0] * (self.n + 1)
         
        # Create an queue and enqueue all
        # vertices with indegree 0
        q = []
         
        # Update the time of the jobs
        # who don't require any job to
        # be completed before this job
        for i in range(1, self.n + 1):
            if indegree[i] == 0:
                q.append(i)
                job[i] = 1
                 
        # Iterate until queue is empty
        while q:
             
            # Get front element of queue
            cur = q.pop(0)
             
            for adj in self.graph[cur]:
                 
                # Decrease in-degree of
                # the current node
                indegree[adj] -= 1
               
                # Push its adjacent elements
                if (indegree[adj] == 0):
                    job[adj] =  1 + job[cur]
                    q.append(adj)
                     
        # Print the time to complete
        # the job
        for i in range(1, n + 1):
            print(job[i], end = " ")
             
        print()
 
# Driver Code
 
# Given Nodes N and edges M
n = 10
m = 13
 
g = Graph(n, m)
 
# Given Directed Edges of graph
g.addEdge(1, 3)
g.addEdge(1, 4)
g.addEdge(1, 5)
g.addEdge(2, 3)
g.addEdge(2, 8)
g.addEdge(2, 9)
g.addEdge(3, 6)
g.addEdge(4, 6)
g.addEdge(4, 8)
g.addEdge(5, 8)
g.addEdge(6, 7)
g.addEdge(7, 8)
g.addEdge(8, 10)
 
# Function Call
g.printOrder(n, m)
 
# This code is contributed by Aanchal Tiwari


C#
// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
static readonly int maxN = 100000;
 
// Adjacency List to store the graph
static List []graph = new List[maxN];
 
// Array to store the in-degree of node
static int []indegree = new int[maxN];
 
// Array to store the time in which
// the job i can be done
static int []job = new int[maxN];
 
// Function to add directed edge
// between two vertices
static void addEdge(int u, int v)
{
     
    // Insert edge from u to v
    graph[u].Add(v);
 
    // Increasing the indegree
    // of vertex v
    indegree[v]++;
}
 
// Function to find the minimum time
// needed by each node to get the task
static void printOrder(int n, int m)
{
     
    // Find the topo sort order
    // using the indegree approach
 
    // Queue to store the
    // nodes while processing
    Queue q = new Queue();
     
    // Pushing all the vertex in the
    // queue whose in-degree is 0
 
    // Update the time of the jobs
    // who don't require any job to
    // be completed before this job
    for(int i = 1; i <= n; i++)
    {
        if (indegree[i] == 0)
        {
            q.Enqueue(i);
            job[i] = 1;
        }
    }
 
    // Iterate until queue is empty
    while (q.Count != 0)
    {
 
        // Get front element of queue
        int cur = q.Peek();
 
        // Pop the front element
        q.Dequeue();
 
        foreach(int adj in graph[cur])
        {
             
            // Decrease in-degree of
            // the current node
            indegree[adj]--;
 
            // Push its adjacent elements
            if (indegree[adj] == 0){
                job[adj] = 1 + job[cur];
                q.Enqueue(adj);
            }
        }
    }
 
    // Print the time to complete
    // the job
    for(int i = 1; i <= n; i++)
        Console.Write(job[i] + " ");
         
    Console.Write("\n");
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given Nodes N and edges M
    int n, m;
    n = 10;
    m = 13;
     
    for(int i = 0; i < graph.Length; i++)
        graph[i] = new List();
         
    // Given directed edges of graph
    addEdge(1, 3);
    addEdge(1, 4);
    addEdge(1, 5);
    addEdge(2, 3);
    addEdge(2, 8);
    addEdge(2, 9);
    addEdge(3, 6);
    addEdge(4, 6);
    addEdge(4, 8);
    addEdge(5, 8);
    addEdge(6, 7);
    addEdge(7, 8);
    addEdge(8, 10);
 
    // Function call
    printOrder(n, m);
}
}
 
// This code is contributed by Amit Katiyar


输出:
1 1 2 2 2 3 4 5 2 6

时间复杂度: O(V+E),其中 V 是节点数,E 是边数。
辅助空间: O(V)

如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live