sciPy stats.describe()函数| Python
scipy.stats.describe(array, axis=0)
沿数组的指定轴计算传递的数组元素的描述性统计信息。
Parameters :
array: Input array or object having the elements to calculate the statistics.
axis: Axis along which the statistics is to be computed. By default axis = 0.
Returns : Statistics of the array elements based on the set parameters.
代码#1:
# FInding statistics of data
from scipy import stats
arr1 = [9, 3, 27]
desc = stats.describe(arr1)
print("No. of observations is :\n", desc)
No. of observations is :
DescribeResult(nobs=3, minmax=(3, 27), mean=13.0, variance=156.0, skewness=0.5280049792181878, kurtosis=-1.5)
代码 #2:使用多维数据
# FInding statistics of data
from scipy import stats
arr1 = [[1, 3, 27],
[3, 4, 6],
[7, 6, 3],
[3, 6, 8]]
desc = stats.describe(arr1, axis = 0)
print("No. of observations at axis = 0 :\n\n", desc)
print("\n\nNo. of observations at axis = 1 :\n\n", desc)
No. of observations at axis = 0 :
DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971]))
No. of observations at axis = 1 :
DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971]))