给定一棵树,以及所有节点的权重,任务是计算权重位数之和为奇数的节点数。
例子:
Input:
Output: 3
Node 1: digitSum(144) = 1 + 4 + 4 = 9
Node 2: digitSum(1234) = 1 + 2 + 3 + 4 = 10
Node 3: digitSum(21) = 2 + 1 = 3
Node 4: digitSum(5) = 5
Node 5: digitSum(77) = 7 + 7 = 14
Only the sum of digits of the weights of nodes 1, 3 and 4 are odd.
方法:对树执行 dfs,对于每个节点,检查其权重的数字之和是否为奇数。如果是,则增加计数。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
int ans = 0;
vector graph[100];
vector weight(100);
// Function to return the
// sum of the digits of n
int digitSum(int n)
{
int sum = 0;
while (n) {
sum += n % 10;
n = n / 10;
}
return sum;
}
// Function to perform dfs
void dfs(int node, int parent)
{
// If sum of the digits of current node's
// weight is odd then increment ans
int sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
for (int to : graph[node]) {
if (to == parent)
continue;
dfs(to, node);
}
}
// Driver code
int main()
{
// Weights of the node
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
// Edges of the tree
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
dfs(1, 1);
cout << ans;
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
static int ans = 0;
static Vector[] graph = new Vector[100];
static Integer[] weight = new Integer[100];
// Function to return the
// sum of the digits of n
static int digitSum(int n)
{
int sum = 0;
while (n > 0)
{
sum += n % 10;
n = n / 10;
}
return sum;
}
// Function to perform dfs
static void dfs(int node, int parent)
{
// If sum of the digits of current node's
// weight is odd then increment ans
int sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
for (int to : graph[node])
{
if (to == parent)
continue;
dfs(to, node);
}
}
// Driver code
public static void main(String[] args)
{
for (int i = 0; i < 100; i++)
graph[i] = new Vector();
// Weights of the node
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
// Edges of the tree
graph[1].add(2);
graph[2].add(3);
graph[2].add(4);
graph[1].add(5);
dfs(1, 1);
System.out.print(ans);
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach
ans = 0
graph = [[] for i in range(100)]
weight = [0] * 100
# Function to return the
# sum of the digits of n
def digitSum(n):
sum = 0
while (n):
sum += n % 10
n = n // 10
return sum
# Function to perform dfs
def dfs(node, parent):
global ans
# If sum of the digits of current node's
# weight is odd then increment ans
sum = digitSum(weight[node])
if (sum % 2 == 1):
ans += 1
for to in graph[node]:
if (to == parent):
continue
dfs(to, node)
# Driver code
# Weights of the node
weight[1] = 144
weight[2] = 1234
weight[3] = 21
weight[4] = 5
weight[5] = 77
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
dfs(1, 1)
print(ans)
# This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
static int ans = 0;
static List[] graph = new List[100];
static int[] weight = new int[100];
// Function to return the
// sum of the digits of n
static int digitSum(int n)
{
int sum = 0;
while (n > 0)
{
sum += n % 10;
n = n / 10;
}
return sum;
}
// Function to perform dfs
static void dfs(int node, int parent)
{
// If sum of the digits of current node's
// weight is odd then increment ans
int sum = digitSum(weight[node]);
if (sum % 2 == 1)
ans += 1;
foreach (int to in graph[node])
{
if (to == parent)
continue;
dfs(to, node);
}
}
// Driver code
public static void Main(String[] args)
{
for (int i = 0; i < 100; i++)
graph[i] = new List();
// Weights of the node
weight[1] = 144;
weight[2] = 1234;
weight[3] = 21;
weight[4] = 5;
weight[5] = 77;
// Edges of the tree
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
dfs(1, 1);
Console.Write(ans);
}
}
// This code is contributed by PrinciRaj1992
Javascript
输出:
3
复杂度分析:
- 时间复杂度: O(N)。
在 DFS 中,树的每个节点都被处理一次,因此对于树中的 N 个节点,由于 dfs 的复杂性是 O(N)。因此,时间复杂度为 O(N)。 - 辅助空间: O(1)。
不需要任何额外的空间,因此空间复杂度是恒定的。
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。