我们已经讨论了 Kruskal 的最小生成树算法。和 Kruskal 算法一样,Prim 算法也是一种贪心算法。它从一棵空的生成树开始。这个想法是维护两组顶点。第一组包含已包含在 MST 中的顶点,另一组包含尚未包含的顶点。在每一步,它都会考虑连接这两个集合的所有边,并从这些边中挑选出权重最小的边。拾取边后,它将边的另一个端点移动到包含 MST 的集合中。
连接图中两组顶点的一组边在图论中称为割。因此,在 Prim 算法的每一步,我们都会找到一个切割(两个集合,一个包含已经包含在 MST 中的顶点,另一个包含其余的顶点),从切割中选择权重最小的边并将这个顶点包含到 MST 集合中(包含已包含顶点的集合)。
Prim 的算法是如何工作的? Prim 算法背后的思想很简单,生成树意味着必须连接所有顶点。因此必须连接两个不相交的顶点子集(上面讨论过)以形成生成树。并且它们必须与最小权重边相连以使其成为最小生成树。
算法
1)创建一个集合mstSet来跟踪已经包含在 MST 中的顶点。
2)为输入图中的所有顶点分配一个键值。将所有键值初始化为 INFINITE。将第一个顶点的键值指定为 0,以便它首先被拾取。
3)虽然 mstSet 不包括所有顶点
…… a)选择mstSet 中不存在的顶点u并且具有最小键值。
…… b) 将u包含到 mstSet。
…… c)更新u的所有相邻顶点的键值。要更新键值,请遍历所有相邻顶点。对于每个相邻的顶点v ,如果边uv 的权重小于v的前一个键值,则将键值更新为uv 的权重
使用键值的想法是从 cut 中选择权重最小的边。键值仅用于尚未包含在 MST 中的顶点,这些顶点的键值表示将它们连接到包含在 MST 中的顶点集的最小权重边。
让我们通过下面的例子来理解:
集合mstSet最初是空的,分配给顶点的键是 {0, INF, INF, INF, INF, INF, INF, INF},其中 INF 表示无限。现在选择具有最小键值的顶点。顶点 0 被拾取,将其包含在mstSet 中。因此mstSet变为 {0}。包含到mstSet 后,更新相邻顶点的键值。 0 的相邻顶点是 1 和 7。1 和 7 的键值更新为 4 和 8。下面的子图显示了顶点及其键值,仅显示了具有有限键值的顶点。 MST 中包含的顶点以绿色显示。
选择具有最小键值且尚未包含在 MST 中(不在 mstSET 中)的顶点。顶点 1 被拾取并添加到 mstSet。所以 mstSet 现在变成了 {0, 1}。更新1的相邻顶点的键值,顶点2的键值变为8。
选择具有最小键值且尚未包含在 MST 中(不在 mstSET 中)的顶点。我们可以选择顶点 7 或顶点 2,让顶点 7 被拾取。所以 mstSet 现在变成了 {0, 1, 7}。更新 7 的相邻顶点的键值。顶点 6 和 8 的键值变为有限(分别为 1 和 7)。
选择具有最小键值且尚未包含在 MST 中(不在 mstSET 中)的顶点。顶点 6 被选取。所以 mstSet 现在变成了 {0, 1, 7, 6}。更新6的相邻顶点的键值。更新顶点5和8的键值。
我们重复上述步骤,直到mstSet包含给定图的所有顶点。最后,我们得到下图。
如何实现上述算法?
我们使用布尔数组 mstSet[] 来表示 MST 中包含的顶点集。如果值 mstSet[v] 为真,则顶点 v 包含在 MST 中,否则不包含。数组 key[] 用于存储所有顶点的键值。另一个数组 parent[] 用于在 MST 中存储父节点的索引。父数组是用于显示构造的 MST 的输出数组。
C++
// A C++ program for Prim's Minimum
// Spanning Tree (MST) algorithm. The program is
// for adjacency matrix representation of the graph
#include
using namespace std;
// Number of vertices in the graph
#define V 5
// A utility function to find the vertex with
// minimum key value, from the set of vertices
// not yet included in MST
int minKey(int key[], bool mstSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
// A utility function to print the
// constructed MST stored in parent[]
void printMST(int parent[], int graph[V][V])
{
cout<<"Edge \tWeight\n";
for (int i = 1; i < V; i++)
cout<
C
// A C program for Prim's Minimum
// Spanning Tree (MST) algorithm. The program is
// for adjacency matrix representation of the graph
#include
#include
#include
// Number of vertices in the graph
#define V 5
// A utility function to find the vertex with
// minimum key value, from the set of vertices
// not yet included in MST
int minKey(int key[], bool mstSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
// A utility function to print the
// constructed MST stored in parent[]
int printMST(int parent[], int graph[V][V])
{
printf("Edge \tWeight\n");
for (int i = 1; i < V; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
// Function to construct and print MST for
// a graph represented using adjacency
// matrix representation
void primMST(int graph[V][V])
{
// Array to store constructed MST
int parent[V];
// Key values used to pick minimum weight edge in cut
int key[V];
// To represent set of vertices included in MST
bool mstSet[V];
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;
// Always include first 1st vertex in MST.
// Make key 0 so that this vertex is picked as first vertex.
key[0] = 0;
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum key vertex from the
// set of vertices not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] = true;
// Update key value and parent index of
// the adjacent vertices of the picked vertex.
// Consider only those vertices which are not
// yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
// print the constructed MST
printMST(parent, graph);
}
// driver program to test above function
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int graph[V][V] = { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
// Print the solution
primMST(graph);
return 0;
}
Java
// A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
// The program is for adjacency matrix representation of the graph
import java.util.*;
import java.lang.*;
import java.io.*;
class MST {
// Number of vertices in the graph
private static final int V = 5;
// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
int minKey(int key[], Boolean mstSet[])
{
// Initialize min value
int min = Integer.MAX_VALUE, min_index = -1;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min) {
min = key[v];
min_index = v;
}
return min_index;
}
// A utility function to print the constructed MST stored in
// parent[]
void printMST(int parent[], int graph[][])
{
System.out.println("Edge \tWeight");
for (int i = 1; i < V; i++)
System.out.println(parent[i] + " - " + i + "\t" + graph[i][parent[i]]);
}
// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void primMST(int graph[][])
{
// Array to store constructed MST
int parent[] = new int[V];
// Key values used to pick minimum weight edge in cut
int key[] = new int[V];
// To represent set of vertices included in MST
Boolean mstSet[] = new Boolean[V];
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++) {
key[i] = Integer.MAX_VALUE;
mstSet[i] = false;
}
// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is
// picked as first vertex
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] = true;
// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] != 0 && mstSet[v] == false && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
// print the constructed MST
printMST(parent, graph);
}
public static void main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
MST t = new MST();
int graph[][] = new int[][] { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
// Print the solution
t.primMST(graph);
}
}
// This code is contributed by Aakash Hasija
Python
# A Python program for Prim's Minimum Spanning Tree (MST) algorithm.
# The program is for adjacency matrix representation of the graph
import sys # Library for INT_MAX
class Graph():
def __init__(self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]
for row in range(vertices)]
# A utility function to print the constructed MST stored in parent[]
def printMST(self, parent):
print "Edge \tWeight"
for i in range(1, self.V):
print parent[i], "-", i, "\t", self.graph[i][ parent[i] ]
# A utility function to find the vertex with
# minimum distance value, from the set of vertices
# not yet included in shortest path tree
def minKey(self, key, mstSet):
# Initialize min value
min = sys.maxint
for v in range(self.V):
if key[v] < min and mstSet[v] == False:
min = key[v]
min_index = v
return min_index
# Function to construct and print MST for a graph
# represented using adjacency matrix representation
def primMST(self):
# Key values used to pick minimum weight edge in cut
key = [sys.maxint] * self.V
parent = [None] * self.V # Array to store constructed MST
# Make key 0 so that this vertex is picked as first vertex
key[0] = 0
mstSet = [False] * self.V
parent[0] = -1 # First node is always the root of
for cout in range(self.V):
# Pick the minimum distance vertex from
# the set of vertices not yet processed.
# u is always equal to src in first iteration
u = self.minKey(key, mstSet)
# Put the minimum distance vertex in
# the shortest path tree
mstSet[u] = True
# Update dist value of the adjacent vertices
# of the picked vertex only if the current
# distance is greater than new distance and
# the vertex in not in the shotest path tree
for v in range(self.V):
# graph[u][v] is non zero only for adjacent vertices of m
# mstSet[v] is false for vertices not yet included in MST
# Update the key only if graph[u][v] is smaller than key[v]
if self.graph[u][v] > 0 and mstSet[v] == False and key[v] > self.graph[u][v]:
key[v] = self.graph[u][v]
parent[v] = u
self.printMST(parent)
g = Graph(5)
g.graph = [ [0, 2, 0, 6, 0],
[2, 0, 3, 8, 5],
[0, 3, 0, 0, 7],
[6, 8, 0, 0, 9],
[0, 5, 7, 9, 0]]
g.primMST();
# Contributed by Divyanshu Mehta
C#
// A C# program for Prim's Minimum
// Spanning Tree (MST) algorithm.
// The program is for adjacency
// matrix representation of the graph
using System;
class MST {
// Number of vertices in the graph
static int V = 5;
// A utility function to find
// the vertex with minimum key
// value, from the set of vertices
// not yet included in MST
static int minKey(int[] key, bool[] mstSet)
{
// Initialize min value
int min = int.MaxValue, min_index = -1;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min) {
min = key[v];
min_index = v;
}
return min_index;
}
// A utility function to print
// the constructed MST stored in
// parent[]
static void printMST(int[] parent, int[, ] graph)
{
Console.WriteLine("Edge \tWeight");
for (int i = 1; i < V; i++)
Console.WriteLine(parent[i] + " - " + i + "\t" + graph[i, parent[i]]);
}
// Function to construct and
// print MST for a graph represented
// using adjacency matrix representation
static void primMST(int[, ] graph)
{
// Array to store constructed MST
int[] parent = new int[V];
// Key values used to pick
// minimum weight edge in cut
int[] key = new int[V];
// To represent set of vertices
// included in MST
bool[] mstSet = new bool[V];
// Initialize all keys
// as INFINITE
for (int i = 0; i < V; i++) {
key[i] = int.MaxValue;
mstSet[i] = false;
}
// Always include first 1st vertex in MST.
// Make key 0 so that this vertex is
// picked as first vertex
// First node is always root of MST
key[0] = 0;
parent[0] = -1;
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick thd minimum key vertex
// from the set of vertices
// not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex
// to the MST Set
mstSet[u] = true;
// Update key value and parent
// index of the adjacent vertices
// of the picked vertex. Consider
// only those vertices which are
// not yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only
// for adjacent vertices of m
// mstSet[v] is false for vertices
// not yet included in MST Update
// the key only if graph[u][v] is
// smaller than key[v]
if (graph[u, v] != 0 && mstSet[v] == false
&& graph[u, v] < key[v]) {
parent[v] = u;
key[v] = graph[u, v];
}
}
// print the constructed MST
printMST(parent, graph);
}
// Driver Code
public static void Main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int[, ] graph = new int[, ] { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
// Print the solution
primMST(graph);
}
}
// This code is contributed by anuj_67.
Javascript
输出:
Edge Weight
0 - 1 2
1 - 2 3
0 - 3 6
1 - 4 5
上述程序的时间复杂度为 O(V^2)。如果输入图使用邻接表表示,那么借助二叉堆,Prim 算法的时间复杂度可以降低到 O(E log V)。有关更多详细信息,请参阅 Prim 的 MST for Adjacency List Representation。
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。