给定一个由N个非零正整数和一个整数K 组成的数组arr[] ,任务是找到K 个最大素数和合数的异或。
例子:
Input: arr[] = {4, 2, 12, 13, 5, 19}, K = 3
Output:
Prime XOR = 10
Composite XOR = 8
2, 5 and 13 are the three maximum primes
from the given array and 2 ^ 5 ^ 13 = 10.
There are only 2 composites in the array i.e. 4 and 12.
And 4 ^ 12 = 8
Input: arr[] = {1, 2, 3, 4, 5, 6, 7}, K = 1
Output:
Prime XOR = 2
Composite XOR = 4
方法:使用埃拉托色尼筛法生成一个布尔向量,其大小为数组中最大元素的大小,可用于检查数字是否为素数。
现在遍历数组和插入所有这些都是最小堆minHeapPrime和所有在最小堆minHeapNonPrime的合数素的数字。
现在,从两个最小堆中弹出前K 个元素并取这些元素的异或。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Function for Sieve of Eratosthenes
vector SieveOfEratosthenes(int max_val)
{
// Create a boolean vector "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
vector prime(max_val + 1, true);
// Set 0 and 1 as non-primes as
// they don't need to be
// counted as prime numbers
prime[0] = false;
prime[1] = false;
for (int p = 2; p * p <= max_val; p++) {
// If prime[p] is not changed, then
// it is a prime
if (prime[p] == true) {
// Update all multiples of p
for (int i = p * 2; i <= max_val; i += p)
prime[i] = false;
}
}
return prime;
}
// Function that calculates the xor
// of k smallest and k
// largest prime numbers in an array
void kMinXOR(int arr[], int n, int k)
{
// Find maximum value in the array
int max_val = *max_element(arr, arr + n);
// Use sieve to find all prime numbers
// less than or equal to max_val
vector prime = SieveOfEratosthenes(max_val);
// Max Heaps to store all the
// prime and composite numbers
priority_queue maxHeapPrime, maxHeapNonPrime;
for (int i = 0; i < n; i++) {
// If current element is prime
if (prime[arr[i]]) {
// Max heap will only store k elements
if (maxHeapPrime.size() < k)
maxHeapPrime.push(arr[i]);
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapPrime.top() > arr[i]) {
maxHeapPrime.pop();
maxHeapPrime.push(arr[i]);
}
}
// If current element is composite
else if (arr[i] != 1) {
// Heap will only store k elements
if (maxHeapNonPrime.size() < k)
maxHeapNonPrime.push(arr[i]);
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapNonPrime.top() > arr[i]) {
maxHeapNonPrime.pop();
maxHeapNonPrime.push(arr[i]);
}
}
}
long long int primeXOR = 0, nonPrimeXor = 0;
while (k--) {
// Calculate the xor
if (maxHeapPrime.size() > 0) {
primeXOR ^= maxHeapPrime.top();
maxHeapPrime.pop();
}
if (maxHeapNonPrime.size() > 0) {
nonPrimeXor ^= maxHeapNonPrime.top();
maxHeapNonPrime.pop();
}
}
cout << "Prime XOR = " << primeXOR << "\n";
cout << "Composite XOR = " << nonPrimeXor << "\n";
}
// Driver code
int main()
{
int arr[] = { 4, 2, 12, 13, 5, 19 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
kMinXOR(arr, n, k);
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
// Function for Sieve of Eratosthenes
static boolean[] SieveOfEratosThenes(int max_val)
{
// Create a boolean vector "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
boolean[] prime = new boolean[max_val + 1];
Arrays.fill(prime, true);
// Set 0 and 1 as non-primes as
// they don't need to be
// counted as prime numbers
prime[0] = false;
prime[1] = false;
for (int p = 2; p * p <= max_val; p++)
{
// If prime[p] is not changed, then
// it is a prime
if (prime[p])
{
// Update all multiples of p
for (int i = p * 2; i <= max_val; i += p)
prime[i] = false;
}
}
return prime;
}
// Function that calculates the sum
// and product of k smallest and k
// largest composite numbers in an array
static void kMinXOR(Integer[] arr, int n, int k)
{
// Find maximum value in the array
int max_val = Collections.max(Arrays.asList(arr));
// Use sieve to find all prime numbers
// less than or equal to max_val
boolean[] prime = SieveOfEratosThenes(max_val);
// Max Heap to store all the prime and composite numbers
PriorityQueue maxHeapPrime =
new PriorityQueue((x, y) -> y - x);
PriorityQueue maxHeapNonPrime =
new PriorityQueue((x, y) -> y - x);
for (int i = 0; i < n; i++)
{
// If current element is prime
if (prime[arr[i]])
{
// Max heap will only store k elements
if (maxHeapPrime.size() < k)
maxHeapPrime.add(arr[i]);
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapPrime.peek() > arr[i])
{
maxHeapPrime.poll();
maxHeapPrime.add(arr[i]);
}
}
// If current element is composite
else if (arr[i] != -1)
{
// Heap will only store k elements
if (maxHeapNonPrime.size() < k)
maxHeapNonPrime.add(arr[i]);
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapNonPrime.peek() > arr[i])
{
maxHeapNonPrime.poll();
maxHeapNonPrime.add(arr[i]);
}
}
}
long primeXOR = 0, nonPrimeXor = 0;
while (k-- > 0)
{
// Calculate the xor
if (maxHeapPrime.size() > 0)
{
primeXOR ^= maxHeapPrime.peek();
maxHeapPrime.poll();
}
if (maxHeapNonPrime.size() > 0)
{
nonPrimeXor ^= maxHeapNonPrime.peek();
maxHeapNonPrime.poll();
}
}
System.out.println("Prime XOR = " + primeXOR);
System.out.println("Composite XOR = " + nonPrimeXor);
}
// Driver Code
public static void main(String[] args)
{
Integer[] arr = { 4, 2, 12, 13, 5, 19 };
int n = arr.length;
int k = 3;
kMinXOR(arr, n, k);
}
}
// This code is contributed by
// sanjeev2552
Python 3
from math import sqrt
# Python 3 implementation of the approach
# Function for Sieve of Eratosthenes
def SieveOfEratosthenes(max_val):
# Create a boolean vector "prime[0..n]". A
# value in prime[i] will finally be false
# if i is Not a prime, else true.
prime = [True for i in range(max_val + 1)]
# Set 0 and 1 as non-primes as
# they don't need to be
# counted as prime numbers
prime[0] = False
prime[1] = False
for p in range(2,int(sqrt(max_val)) + 1, 1):
# If prime[p] is not changed, then
# it is a prime
if (prime[p] == True):
# Update all multiples of p
for i in range(p * 2,max_val+1,p):
prime[i] = False
return prime
# Function that calculates the xor
# of k smallest and k
# largest prime numbers in an array
def kMinXOR(arr, n, k):
# Find maximum value in the array
max_val = max(arr)
# Use sieve to find all prime numbers
# less than or equal to max_val
prime = SieveOfEratosthenes(max_val)
# Max Heaps to store all the
# prime and composite numbers
maxHeapPrime = []
maxHeapNonPrime = []
for i in range(n):
# If current element is prime
if (prime[arr[i]]):
# Max heap will only store k elements
if (len(maxHeapPrime) < k):
maxHeapPrime.append(arr[i])
maxHeapPrime.sort(reverse = True)
# If the size of max heap is K and the
# top element is greater than the current
# element than it needs to be replaced
# by the current element as only
# minimum k elements are required
elif(maxHeapPrime[0] > arr[i]):
maxHeapPrime.remove(maxHeapPrime[0])
maxHeapPrime.append(arr[i])
maxHeapPrime.sort(reverse = True)
# If current element is composite
elif(arr[i] != 1):
# Heap will only store k elements
if (len(maxHeapNonPrime) < k):
maxHeapNonPrime.append(arr[i])
maxHeapNonPrime.sort(reverse = True)
# If the size of max heap is K and the
# top element is greater than the current
# element than it needs to be replaced
# by the current element as only
# minimum k elements are required
elif(maxHeapNonPrime[0] > arr[i]):
maxHeapNonPrime.remove(maxHeapNonPrime[0])
maxHeapNonPrime.append(arr[i])
maxHeapNonPrime.sort(reverse = True)
primeXOR = 0
nonPrimeXor = 0
while (k):
# Calculate the xor
if (len(maxHeapPrime) > 0):
primeXOR ^= maxHeapPrime[0]
maxHeapPrime.remove(maxHeapPrime[0])
if (len(maxHeapNonPrime) > 0):
nonPrimeXor ^= maxHeapNonPrime[0];
maxHeapNonPrime.remove(maxHeapNonPrime[0])
k -= 1
print("Prime XOR = ",primeXOR)
print("Composite XOR = ",nonPrimeXor)
# Driver code
if __name__ == '__main__':
arr = [4, 2, 12, 13, 5, 19]
n = len(arr)
k = 3
kMinXOR(arr, n, k);
# This code is contributed by Surendra_Gangwar
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Function for Sieve of Eratosthenes
static bool[] SieveOfEratosThenes(int max_val)
{
// Create a boolean vector "prime[0..n]". A
// value in prime[i] will finally be false
// if i is Not a prime, else true.
bool[] prime = new bool[max_val + 1];
Array.Fill(prime, true);
// Set 0 and 1 as non-primes as
// they don't need to be
// counted as prime numbers
prime[0] = false;
prime[1] = false;
for (int p = 2; p * p <= max_val; p++)
{
// If prime[p] is not changed, then
// it is a prime
if (prime[p])
{
// Update all multiples of p
for (int i = p * 2; i <= max_val; i += p)
prime[i] = false;
}
}
return prime;
}
// Function that calculates the sum
// and product of k smallest and k
// largest composite numbers in an array
static void kMinXOR(int[] arr, int n, int k)
{
// Find maximum value in the array
int max_val = arr[0];
for(int i = 1; i < arr.Length; i++)
{
max_val = Math.Max(max_val, arr[i]);
}
// Use sieve to find all prime numbers
// less than or equal to max_val
bool[] prime = SieveOfEratosThenes(max_val);
// Max Heap to store all the prime and composite numbers
List maxHeapPrime = new List();
List maxHeapNonPrime = new List();
for (int i = 0; i < n; i++)
{
// If current element is prime
if (prime[arr[i]])
{
// Max heap will only store k elements
if (maxHeapPrime.Count < k)
{
maxHeapPrime.Add(arr[i]);
maxHeapPrime.Sort();
maxHeapPrime.Reverse();
}
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapPrime[0] > arr[i])
{
maxHeapPrime.RemoveAt(0);
maxHeapPrime.Add(arr[i]);
maxHeapPrime.Sort();
maxHeapPrime.Reverse();
}
}
// If current element is composite
else if (arr[i] != -1)
{
// Heap will only store k elements
if (maxHeapNonPrime.Count < k)
{
maxHeapNonPrime.Add(arr[i]);
maxHeapNonPrime.Sort();
maxHeapNonPrime.Reverse();
}
// If the size of max heap is K and the
// top element is greater than the current
// element than it needs to be replaced
// by the current element as only
// minimum k elements are required
else if (maxHeapNonPrime[0] > arr[i])
{
maxHeapNonPrime.RemoveAt(0);
maxHeapNonPrime.Add(arr[i]);
maxHeapNonPrime.Sort();
maxHeapNonPrime.Reverse();
}
}
}
long primeXOR = 0, nonPrimeXor = 0;
while (k-- > 0)
{
// Calculate the xor
if (maxHeapPrime.Count > 0)
{
primeXOR ^= maxHeapPrime[0];
maxHeapPrime.RemoveAt(0);
}
if (maxHeapNonPrime.Count > 0)
{
nonPrimeXor ^= maxHeapNonPrime[0];
maxHeapNonPrime.RemoveAt(0);
}
}
Console.WriteLine("Prime XOR = " + primeXOR);
Console.WriteLine("Composite XOR = " + nonPrimeXor);
}
// Driver code
static void Main() {
int[] arr = { 4, 2, 12, 13, 5, 19 };
int n = arr.Length;
int k = 3;
kMinXOR(arr, n, k);
}
}
// This code is contributed by divyesh072019.
Javascript
输出:
Prime XOR = 10
Composite XOR = 8
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。