在给定的笛卡尔平面中,有 N 个点。任务是找到点对数(A,B),使得
- A点和B点不重合。
- 点之间的曼哈顿距离和欧几里得距离应该相等。
注意:一对 2 点(A,B)被认为与一对 2 点(B,A)相同。
Manhattan Distance = |x2-x1|+|y2-y1|
Euclidean Distance = ((x2-x1)^2 + (y2-y1)^2)^0.5 where points are (x1, y1) and (x2, y2).
例子:
Input: N = 3, Points = {{1, 2}, {2, 3}, {1, 3}}
Output: 2
Pairs are:
1) (1, 2) and (1, 3)
Euclidean distance of (1, 2) and (1, 3) = &root;((1 – 1)2 + (3 – 2)2) = 1
Manhattan distance of (1, 2) and (1, 3) = |(1 – 1)| + |(2 – 3)| = 1
2) (1, 3) and (2, 3)
Euclidean distance of (1, 3) and (2, 3) = &root;((1 – 2)2 + (3 – 3)2) = 1
Manhattan distance of (1, 3) and (2, 3) = |(1 – 2)| + |(3 – 3)| = 1
Input: N = 3, Points = { {1, 1}, {2, 3}, {1, 1} }
Output: 0
Here none of the pairs satisfy the above two conditions
方法:关于求解方程
|x2-x1|+|y2-y1| = sqrt((x2-x1)^2+(y2-y1)^2)
我们得到, x2 = x1 或 y2 = y1。
考虑3张地图,
1) Map X,其中 X[x i ] 存储 x 坐标等于 x i 的点数
2) 映射 Y,其中 Y[y i ] 存储其 y 坐标等于 y i 的点数
3) Map XY,其中XY[(X i , Y i )] 存储与点(x i , y i )重合的点数
现在,
令 Xans 为具有相同 X 坐标的对数 = X[x i ] 2对于所有不同的 x i =
令 Yans 为所有不同 y i具有相同 Y 坐标的对数 = Y[x i ] 2
令 XYans 为所有不同点 (x i , y i ) 的重合点数 = XY[{x i , y i }] 2
因此所需的答案 = Xans + Yans – XYans
下面是上述方法的实现:
C++
// C++ implementation of the above approach
#include
using namespace std;
// Function to return the number of non coincident
// pairs of points with manhattan distance
// equal to euclidean distance
int findManhattanEuclidPair(pair arr[], int n)
{
// To store frequency of all distinct Xi
map X;
// To store Frequency of all distinct Yi
map Y;
// To store Frequency of all distinct
// points (Xi, Yi);
map, int> XY;
for (int i = 0; i < n; i++) {
int xi = arr[i].first;
int yi = arr[i].second;
// Hash xi coordinate
X[xi]++;
// Hash yi coordinate
Y[yi]++;
// Hash the point (xi, yi)
XY[arr[i]]++;
}
int xAns = 0, yAns = 0, xyAns = 0;
// find pairs with same Xi
for (auto xCoordinatePair : X) {
int xFrequency = xCoordinatePair.second;
// calculate ((xFrequency) C2)
int sameXPairs =
(xFrequency * (xFrequency - 1)) / 2;
xAns += sameXPairs;
}
// find pairs with same Yi
for (auto yCoordinatePair : Y) {
int yFrequency = yCoordinatePair.second;
// calculate ((yFrequency) C2)
int sameYPairs =
(yFrequency * (yFrequency - 1)) / 2;
yAns += sameYPairs;
}
// find pairs with same (Xi, Yi)
for (auto XYPair : XY) {
int xyFrequency = XYPair.second;
// calculate ((xyFrequency) C2)
int samePointPairs =
(xyFrequency * (xyFrequency - 1)) / 2;
xyAns += samePointPairs;
}
return (xAns + yAns - xyAns);
}
// Driver Code
int main()
{
pair arr[] = {
{ 1, 2 },
{ 2, 3 },
{ 1, 3 }
};
int n = sizeof(arr) / sizeof(arr[0]);
cout << findManhattanEuclidPair(arr, n) << endl;
return 0;
}
Python3
# Python3 implementation of the
# above approach
from collections import defaultdict
# Function to return the number of
# non coincident pairs of points with
# manhattan distance equal to
# euclidean distance
def findManhattanEuclidPair(arr, n):
# To store frequency of all distinct Xi
X = defaultdict(lambda:0)
# To store Frequency of all distinct Yi
Y = defaultdict(lambda:0)
# To store Frequency of all distinct
# points (Xi, Yi)
XY = defaultdict(lambda:0)
for i in range(0, n):
xi = arr[i][0]
yi = arr[i][1]
# Hash xi coordinate
X[xi] += 1
# Hash yi coordinate
Y[yi] += 1
# Hash the point (xi, yi)
XY[tuple(arr[i])] += 1
xAns, yAns, xyAns = 0, 0, 0
# find pairs with same Xi
for xCoordinatePair in X:
xFrequency = X[xCoordinatePair]
# calculate ((xFrequency) C2)
sameXPairs = (xFrequency *
(xFrequency - 1)) // 2
xAns += sameXPairs
# find pairs with same Yi
for yCoordinatePair in Y:
yFrequency = Y[yCoordinatePair]
# calculate ((yFrequency) C2)
sameYPairs = (yFrequency *
(yFrequency - 1)) // 2
yAns += sameYPairs
# find pairs with same (Xi, Yi)
for XYPair in XY:
xyFrequency = XY[XYPair]
# calculate ((xyFrequency) C2)
samePointPairs = (xyFrequency *
(xyFrequency - 1)) // 2
xyAns += samePointPairs
return (xAns + yAns - xyAns)
# Driver Code
if __name__ == "__main__":
arr = [[1, 2], [2, 3], [1, 3]]
n = len(arr)
print(findManhattanEuclidPair(arr, n))
# This code is contributed by Rituraj Jain
2
时间复杂度:O(NlogN),其中 N 是点数
空间复杂度:O(N)