给定包含重复元素的 NxM 整数矩阵。任务是找到给定矩阵中所有最小出现元素的总和。那是矩阵中频率为偶数的所有此类元素的总和。
例子:
Input : mat[] = {{1, 1, 2},
{2, 3, 3},
{4, 5, 3}}
Output : 9
The min occurring elements are 4, 5 and they
occurs only 1 time.
Therefore, sum = 4+5 = 9
Input : mat[] = {{10, 20},
{40, 40}}
Output : 30
方法:
- 遍历矩阵并使用C++中的map来存储矩阵元素的频率,使得map的key是矩阵元素,value是它在矩阵中的频率。
- 然后遍历地图找到最小频率。
- 最后,遍历map查找元素的频率,并检查它是否与上一步获得的最小频率匹配,如果匹配,则将该元素的频率乘以求和。
下面是上述方法的实现:
C++
// C++ program to find sum of all min
// frequency elements in a Matrix
#include
using namespace std;
#define N 3 // Rows
#define M 3 // Columns
// Function to find sum of all min
// frequency elements in a Matrix
int sumMinOccurring(int arr[N][M])
{
// Store frequencies of elements
// in matrix
map mp;
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
mp[arr[i][j]]++;
}
}
// Find minimum frequency
int sum = 0;
int minFreq = INT_MAX;
for (auto itr = mp.begin(); itr != mp.end(); itr++) {
if (itr->second < minFreq)
minFreq = itr->second;
}
// Sum of minimum frequency elements
for (auto itr = mp.begin(); itr != mp.end(); itr++) {
if (itr->second == minFreq) {
sum += (itr->first) * (itr->second);
}
}
return sum;
}
// Driver Code
int main()
{
int mat[N][M] = { { 1, 2, 3 },
{ 1, 3, 2 },
{ 1, 5, 6 } };
cout << sumMinOccurring(mat) << endl;
return 0;
}
Java
// Java program to find sum of all min
// frequency elements in a Matrix
import java.util.HashMap;
import java.util.Iterator;
class GFG
{
static int N = 3; // Rows
static int M = 3; // Columns
// Function to find sum of all min
// frequency elements in a Matrix
public static int sumMinOccuring(int[][] arr)
{
// Store frequencies of elements
// in matrix
HashMap mp = new HashMap<>();
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (mp.containsKey(arr[i][j]))
{
int x = mp.get(arr[i][j]);
mp.put(arr[i][j], x + 1);
}
else
mp.put(arr[i][j], 1);
}
}
// Find minimum frequency
int sum = 0;
int minFreq = Integer.MAX_VALUE;
for (HashMap.Entry entry : mp.entrySet())
{
if (entry.getValue() < minFreq)
minFreq = entry.getValue();
}
// Sum of minimum frequency elements
for (HashMap.Entry entry : mp.entrySet())
{
if (entry.getValue() == minFreq)
sum += entry.getKey() * entry.getValue();
}
return sum;
}
// Driver code
public static void main(String[] args)
{
int[][] mat = { { 1, 2, 3 },
{ 1, 3, 2 },
{ 1, 5, 6 } };
System.out.println(sumMinOccuring(mat));
}
}
// This code is contributed by
// sanjeev2552
Python3
# Python3 program to find sum of all min
# frequency elements in a Matrix
import sys
import math
# Store frequencies of elements
# in matrix
def sumMinOccuring(mat):
n,m=len(mat),len(mat[0])
_map={}
for i in range(n):
for j in range(m):
d=mat[i][j]
if d in _map:
_map[d]=_map.get(d)+1
else:
_map[d]=1
# Find minimum frequency
_sum,minFreq=0,sys.maxsize
for i in _map:
minFreq=min(minFreq,_map.get(i))
# Sum of minimum frequency elements
for i in range(n):
for j in range(m):
if _map.get(mat[i][j])==minFreq:
_sum+=mat[i][j]
return _sum
# Driver Code
if __name__=='__main__':
mat=[[1,2,3],[1,3,2],[1,5,6]]
print(sumMinOccuring(mat))
# This code is Contributed by Vikash Kumar 37
C#
// C# program to find sum of all min
// frequency elements in a Matrix
using System;
using System.Collections.Generic;
class GFG
{
static int N = 3; // Rows
static int M = 3; // Columns
// Function to find sum of all min
// frequency elements in a Matrix
public static int sumMinOccuring(int[,] arr)
{
// Store frequencies of elements
// in matrix
Dictionary mp = new Dictionary();
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (mp.ContainsKey(arr[i, j]))
{
int x = mp[arr[i, j]];
mp[arr[i, j]] = x + 1;
}
else
mp[arr[i, j]] = 1;
}
}
// Find minimum frequency
int sum = 0;
int minFreq = 10000009;
foreach(KeyValuePair ele1 in mp)
{
if(ele1.Value < minFreq)
minFreq = ele1.Value;
}
// Sum of minimum frequency elements
foreach(KeyValuePair ele1 in mp)
{
if (ele1.Value == minFreq)
sum += ele1.Key * ele1.Value;
}
return sum;
}
// Driver code
public static void Main()
{
int[,] mat = new int[3, 3] {{ 1, 2, 3 },
{ 1, 3, 2 },
{ 1, 5, 6 }};
Console.Write(sumMinOccuring(mat));
}
}
// This code is contributed by
// Mohit kumar
Javascript
输出:
11
时间复杂度: O(M x N)
辅助空间: O(M x N)
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。