给定k 个链表,每个链表的大小为n并且每个链表都按非递减顺序排序,将它们合并为一个已排序(非递减顺序)链表,并将排序后的链表打印为输出。
例子:
Input: k = 3, n = 4
list1 = 1->3->5->7->NULL
list2 = 2->4->6->8->NULL
list3 = 0->9->10->11->NULL
Output: 0->1->2->3->4->5->6->7->8->9->10->11
Merged lists in a sorted order
where every element is greater
than the previous element.
Input: k = 3, n = 3
list1 = 1->3->7->NULL
list2 = 2->4->8->NULL
list3 = 9->10->11->NULL
Output: 1->2->3->4->7->8->9->10->11
Merged lists in a sorted order
where every element is greater
than the previous element.
来源:合并 K 排序链表 |方法二
该问题的有效解决方案已在本文的方法 3中讨论。
方法:此解决方案基于用于解决此处讨论的“合并 k 排序数组”问题的MIN HEAP方法。 MinHeap: Min-Heap 是一个完整的二叉树,其中每个内部节点中的值小于或等于该节点的子节点中的值。将堆的元素映射到数组是微不足道的:如果一个节点存储在索引 k 处,则其左子节点存储在索引 2k + 1 处,其右子节点存储在索引 2k + 2 处。
- 创建一个最小堆并插入所有“k”链表的第一个元素。
- 只要最小堆不为空,执行以下步骤:
- 移除最小堆的顶部元素(它是最小堆中所有元素中的当前最小值)并将其添加到结果列表中。
- 如果在上一步弹出的元素旁边存在一个元素(在同一个链表中),则将其插入到最小堆中。
- 返回合并列表的头节点地址。
下面是上述方法的实现:
C++
// C++ implementation to merge k
// sorted linked lists
// | Using MIN HEAP method
#include
using namespace std;
struct Node {
int data;
struct Node* next;
};
// Utility function to create a new node
struct Node* newNode(int data)
{
// allocate node
struct Node* new_node = new Node();
// put in the data
new_node->data = data;
new_node->next = NULL;
return new_node;
}
// 'compare' function used to build up the
// priority queue
struct compare {
bool operator()(
struct Node* a, struct Node* b)
{
return a->data > b->data;
}
};
// function to merge k sorted linked lists
struct Node* mergeKSortedLists(
struct Node* arr[], int k)
{
// priority_queue 'pq' implemented
// as min heap with the
// help of 'compare' function
priority_queue, compare> pq;
// push the head nodes of all
// the k lists in 'pq'
for (int i = 0; i < k; i++)
if (arr[i] != NULL)
pq.push(arr[i]);
// Handles the case when k = 0
// or lists have no elements in them
if (pq.empty())
return NULL;
struct Node *dummy = newNode(0);
struct Node *last = dummy;
// loop till 'pq' is not empty
while (!pq.empty()) {
// get the top element of 'pq'
struct Node* curr = pq.top();
pq.pop();
// add the top element of 'pq'
// to the resultant merged list
last->next = curr;
last = last->next;
// check if there is a node
// next to the 'top' node
// in the list of which 'top'
// node is a member
if (curr->next != NULL)
// push the next node of top node in 'pq'
pq.push(curr->next);
}
// address of head node of the required merged list
return dummy->next;
}
// function to print the singly linked list
void printList(struct Node* head)
{
while (head != NULL) {
cout << head->data << " ";
head = head->next;
}
}
// Driver program to test above
int main()
{
int k = 3; // Number of linked lists
int n = 4; // Number of elements in each list
// an array of pointers storing the head nodes
// of the linked lists
Node* arr[k];
// creating k = 3 sorted lists
arr[0] = newNode(1);
arr[0]->next = newNode(3);
arr[0]->next->next = newNode(5);
arr[0]->next->next->next = newNode(7);
arr[1] = newNode(2);
arr[1]->next = newNode(4);
arr[1]->next->next = newNode(6);
arr[1]->next->next->next = newNode(8);
arr[2] = newNode(0);
arr[2]->next = newNode(9);
arr[2]->next->next = newNode(10);
arr[2]->next->next->next = newNode(11);
// merge the k sorted lists
struct Node* head = mergeKSortedLists(arr, k);
// print the merged list
printList(head);
return 0;
}
Java
// Java implementation to merge
// k sorted linked lists
// Using MIN HEAP method
import java.util.PriorityQueue;
import java.util.Comparator;
public class MergeKLists {
// function to merge k
// sorted linked lists
public static Node mergeKSortedLists(
Node arr[], int k)
{
Node head = null, last = null;
// priority_queue 'pq' implemeted
// as min heap with the
// help of 'compare' function
PriorityQueue pq
= new PriorityQueue<>(
new Comparator() {
public int compare(Node a, Node b)
{
return a.data - b.data;
}
});
// push the head nodes of all
// the k lists in 'pq'
for (int i = 0; i < k; i++)
if (arr[i] != null)
pq.add(arr[i]);
// loop till 'pq' is not empty
while (!pq.isEmpty()) {
// get the top element of 'pq'
Node top = pq.peek();
pq.remove();
// check if there is a node
// next to the 'top' node
// in the list of which 'top'
// node is a member
if (top.next != null)
// push the next node in 'pq'
pq.add(top.next);
// if final merged list is empty
if (head == null) {
head = top;
// points to the last node so far of
// the final merged list
last = top;
}
else {
// insert 'top' at the end
// of the merged list so far
last.next = top;
// update the 'last' pointer
last = top;
}
}
// head node of the required merged list
return head;
}
// function to print the singly linked list
public static void printList(Node head)
{
while (head != null) {
System.out.print(head.data + " ");
head = head.next;
}
}
// Utility function to create a new node
public Node push(int data)
{
Node newNode = new Node(data);
newNode.next = null;
return newNode;
}
public static void main(String args[])
{
int k = 3; // Number of linked lists
int n = 4; // Number of elements in each list
// an array of pointers storing the head nodes
// of the linked lists
Node arr[] = new Node[k];
arr[0] = new Node(1);
arr[0].next = new Node(3);
arr[0].next.next = new Node(5);
arr[0].next.next.next = new Node(7);
arr[1] = new Node(2);
arr[1].next = new Node(4);
arr[1].next.next = new Node(6);
arr[1].next.next.next = new Node(8);
arr[2] = new Node(0);
arr[2].next = new Node(9);
arr[2].next.next = new Node(10);
arr[2].next.next.next = new Node(11);
// Merge all lists
Node head = mergeKSortedLists(arr, k);
printList(head);
}
}
class Node {
int data;
Node next;
Node(int data)
{
this.data = data;
next = null;
}
}
// This code is contributed by Gaurav Tiwari
Javascript
输出
0 1 2 3 4 5 6 7 8 9 10 11
复杂度分析:
- 时间复杂度: O(N * log k) 或 O(n * k * log k),其中,’N’ 是所有链表中元素的总数,’k’ 是列表的总数,’ n’ 是每个链表的大小。
插入和删除操作将在所有 N 个节点的 min-heap 中执行。
在最小堆中插入和删除需要 log k 时间。 - 辅助空间: O(k)。
优先级队列在任何时间点最多有 ‘k’ 个元素,因此我们的算法所需的额外空间是 O(k)。
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。