📅  最后修改于: 2023-12-03 15:33:48.386000             🧑  作者: Mango
Proto Van Emde蟒蛇树是一种数据结构,用于支持动态集合数据的高效操作。其中的查询操作是最小值和最大值,通过该操作可以在常数时间内找到数据集合中的最小值和最大值。
class ProtoVanEmdeBoasTree:
def __init__(self, u):
self.u = u
self.min = None
self.max = None
if u == 2:
self.clusters = None
self.leaves = [None, None]
else:
self.clusters = [None] * self.sqrtu
self.summary = ProtoVanEmdeBoasTree(self.sqrtu)
self.leaves = [ProtoVanEmdeBoasTree(self.sqrtu) for i in range(self.sqrtu)]
self.sqrtu = int(sqrt(u))
def high(self, x):
return x // self.sqrtu
def low(self, x):
return x % self.sqrtu
def index(self, x, y):
return x * self.sqrtu + y
def min_value(self):
return self.min
def max_value(self):
return self.max
def member(self, x):
if x == self.min or x == self.max:
return True
elif self.u == 2:
return False
else:
return self.clusters[self.high(x)] and self.leaves[self.high(x)].member(self.low(x))
def successor(self, x):
if self.u == 2:
if x == 0 and self.max == 1:
return 1
else:
return None
elif self.min is not None and x < self.min:
return self.min
else:
max_low = self.leaves[self.high(x)].max_value()
if max_low is not None and self.low(x) < max_low:
offset = self.leaves[self.high(x)].successor(self.low(x))
return self.index(self.high(x), offset)
else:
succ_cluster = self.summary.successor(self.high(x))
if succ_cluster is None:
return None
else:
offset = self.leaves[succ_cluster].min_value()
return self.index(succ_cluster, offset)
def predecessor(self, x):
if self.u == 2:
if x == 1 and self.min == 0:
return 0
else:
return None
elif self.max is not None and x > self.max:
return self.max
else:
min_low = self.leaves[self.high(x)].min_value()
if min_low is not None and self.low(x) > min_low:
offset = self.leaves[self.high(x)].predecessor(self.low(x))
return self.index(self.high(x), offset)
else:
pred_cluster = self.summary.predecessor(self.high(x))
if pred_cluster is None:
if self.min is not None and x > self.min:
return self.min
else:
return None
else:
offset = self.leaves[pred_cluster].max_value()
return self.index(pred_cluster, offset)
def insert(self, x):
if self.min is None:
self.min = x
self.max = x
else:
if x < self.min:
x, self.min = self.min, x
if self.u > 2:
if self.leaves[self.high(x)].min_value() is None:
self.summary.insert(self.high(x))
self.leaves[self.high(x)].min = self.low(x)
self.leaves[self.high(x)].max = self.low(x)
else:
self.leaves[self.high(x)].insert(self.low(x))
if x > self.max:
self.max = x
def delete(self, x):
if self.min == self.max:
self.min = None
self.max = None
elif self.u == 2:
if x == 0:
self.min = 1
else:
self.min = 0
self.max = self.min
else:
if x == self.min:
min_cluster = self.summary.min_value()
x = self.index(min_cluster, self.leaves[min_cluster].min_value())
self.min = x
if self.u > 2:
self.leaves[self.high(x)].delete(self.low(x))
if self.leaves[self.high(x)].min_value() is None:
self.summary.delete(self.high(x))
if x == self.max:
summary_max = self.summary.max_value()
if summary_max is None:
self.max = self.min
else:
self.max = self.index(summary_max, self.leaves[summary_max].max_value())
elif x == self.max:
self.max = self.index(self.high(x), self.leaves[self.high(x)].max_value())
以上是Proto Van Emde蟒蛇树查询最小最大值的代码片段,该代码片段可以用于高效地查找动态数据集合中的最小值和最大值。