📅  最后修改于: 2023-12-03 14:45:40.513000             🧑  作者: Mango
Proto Van Emde蟒蛇树是一种用于支持数值集合的数据结构。它可以支持向集合中插入元素、删除元素以及查询元素是否存在等操作,以及维护一些集合特性,如前驱、后继、最小值、最大值等。Proto Van Emde蟒蛇树的时间复杂度为$O(\log\log M)$,其中M是集合中元素的最大值。
在Proto Van Emde蟒蛇树中,我们需要支持查找某个元素的继任者和前任者。继任者指的是集合中比某个元素大的最小元素,前任者指的是集合中比某个元素小的最大元素。我们可以使用Proto Van Emde蟒蛇树中的高层结构来实现这两个操作。
对于查找后继者操作,我们可以从根节点开始递归向下遍历Proto Van Emde蟒蛇树。如果待查找元素x比当前节点的最大元素小,则该节点的最小元素就是x的后继者;否则我们需要递归调用其子节点来查找。具体地,假设当前节点的最大元素为max,最小元素为min,其子节点的最大元素为$max'$,最小元素为$min'$。若x小于等于$max'$,则我们在对应子节点$child_i$中递归查找;否则我们需要查找下一个子节点$j$,使得$max_j > x$,然后在子节点$j$中查找其最小元素。最终我们得到的就是x的后继者。
对于查找前任者操作,思路类似于查找后继者,但是我们从根节点开始遍历,检查当前节点的最小元素。如果待查找元素x比当前节点的最小元素大,则该节点的最大元素就是x的前任者。否则我们需要递归调用其祖先节点来查找。具体地,我们找到第一个不包含x的祖先节点$id$,并返回节点$id$的最大元素$max$。如果没有这样的祖先节点,则返回空值。
下面是查找后继者和前任者的Python代码实现:
class VEB:
def __init__(self, size):
self.min = None
self.max = None
self.summary = None
self.cluster = [None] * size
def high(self, x):
"""
Get the cluster index of x.
"""
return x // int(math.sqrt(len(self.cluster)))
def low(self, x):
"""
Get the index of x in the corresponding cluster.
"""
return x % int(math.sqrt(len(self.cluster)))
def index(self, x, y):
"""
Map 2D index to 1D index.
"""
return x * int(math.sqrt(len(self.cluster))) + y
def member(self, x):
"""
Check if x is in the set.
"""
if x == self.min or x == self.max:
return True
elif self.min is None or self.max is None or x < self.min or x > self.max:
return False
else:
return self.cluster[self.high(x)].member(self.low(x))
def insert(self, x):
"""
Insert x into the set.
"""
if self.min is None:
self.min = x
self.max = x
else:
if x < self.min:
x, self.min = self.min, x
if self.max < x:
self.max = x
if len(self.cluster) > 2:
hi = self.high(x)
lo = self.low(x)
if self.cluster[hi] is None:
self.cluster[hi] = VEB(int(math.sqrt(len(self.cluster))))
if self.summary is None:
self.summary = VEB(int(math.sqrt(len(self.cluster))))
if self.cluster[hi].min is None:
self.summary.insert(hi)
self.cluster[hi].min = lo
self.cluster[hi].max = lo
else:
self.cluster[hi].insert(lo)
def delete(self, x):
"""
Delete x from the set.
"""
if self.min == self.max:
self.min = self.max = None
elif self.min is None or self.max is None or x < self.min or x > self.max:
pass
else:
if x == self.min:
if self.summary is None:
self.min = self.max
else:
hi = self.summary.min
lo = self.cluster[hi].min
x = self.min = self.index(hi, lo)
hi = self.high(x)
lo = self.low(x)
self.cluster[hi].delete(lo)
if self.cluster[hi].min is None:
self.summary.delete(hi)
if x == self.max:
if self.summary is None:
self.max = self.min
else:
hi = self.summary.max
lo = self.cluster[hi].max
self.max = self.index(hi, lo)
elif x == self.max:
hi = self.high(x)
lo = self.cluster[hi].max
self.max = self.index(hi, lo)
def successor(self, x):
"""
Find the successor of x in the set.
"""
if self.max is not None and x < self.max:
if self.min is None or x < self.min:
return self.min
else:
hi = self.high(x)
lo = self.low(x)
if self.cluster[hi] is not None and self.cluster[hi].max is not None and self.cluster[hi].max > lo:
offset = self.cluster[hi].successor(lo)
return self.index(hi, offset)
else:
succ_cluster = None
if self.summary is not None and self.summary.max is not None and hi < self.summary.max:
succ_cluster = self.summary.successor(hi)
else:
return None
if succ_cluster is None:
return None
else:
offset = self.cluster[succ_cluster].min
return self.index(succ_cluster, offset)
else:
return None
def predecessor(self, x):
"""
Find the predecessor of x in the set.
"""
if self.min is not None and x > self.min:
if self.max is None or x > self.max:
return self.max
else:
hi = self.high(x)
lo = self.low(x)
if self.cluster[hi] is not None and self.cluster[hi].min is not None and self.cluster[hi].min < lo:
offset = self.cluster[hi].predecessor(lo)
return self.index(hi, offset)
else:
pred_cluster = None
if self.summary is not None and self.summary.min is not None and hi > self.summary.min:
pred_cluster = self.summary.predecessor(hi)
else:
return None
if pred_cluster is None:
if self.min is not None and x > self.min:
return self.min
else:
return None
else:
offset = self.cluster[pred_cluster].max
return self.index(pred_cluster, offset)