如何在Python中使用 Plotly Express 在辅助 Y 轴上绘图?
附加条件: Python Ploty
在本文中,我们将学习如何使用 plotly express 在辅助 y 轴上绘图。
Plotly 数据可视化最具欺骗性的强大功能之一是,当将光标指向出现的点标签时,查看者能够快速分析足够数量的数据信息。它为我们提供了从文档中读取和分析信息的最简单方法。多轴图表用于沿两个或多个轴绘制来自查询的数据点。在这里,我们将讨论在 plotly express 中绘制多个 y 轴的不同方法,以使其更加清晰。
Syntax: yaxis=dict(title=”yaxis title”, overlaying=”y”, side=”left”, position=[0-1])
Parameters:
- title: str, (name of the axis)
- overlaying: str, (name of the bars are plotted over one another)
- side: [‘top’, ‘bottom’, ‘left’, ‘right’]
- position: int/float, [in range between 0-1].
示例 1:两个 Y 轴
在此示例中,我们使用两个数据图,第一个是条形图,另一个是散点图。 Update_layout使用字典和/或关键字参数更新图形布局的属性,我们将在上述每个轴的语法的帮助下定义连续的辅助 yaxis(即yaxis, yaxis2 )。
Python3
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(x=[1, 2, 3], y=[40, 50, 60],
name="yaxis1 data", yaxis='y'))
fig.add_trace(go.Scatter(x=[2, 3, 4], y=[4, 5, 6],
name="yaxis2 data", yaxis="y2"))
# Create axis objects
fig.update_layout(xaxis=dict(domain=[0.3, 0.7]),
#create 1st y axis
yaxis=dict(
title="yaxis title",
titlefont=dict(color="#1f77b4"),
tickfont=dict(color="#1f77b4")),
#create 2nd y axis
yaxis2=dict(title="yaxis2 title",overlaying="y",
side="left",position=0.15))
# title
fig.update_layout(
title_text="Geeksforgeeks - Three y-axes",
width=800,
)
fig.show()
Python3
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6],
name="yaxis1 data", yaxis='y'))
fig.add_trace(go.Scatter(x=[2, 3, 5], y=[40, 50, 60],
name="yaxis2 data", yaxis="y2"))
fig.add_trace(go.Bar(x=[4, 5, 6], y=[40000, 50000, 60000],
name="yaxis3 data", yaxis="y3"))
# Create axis objects
fig.update_layout(xaxis=dict(domain=[0.3, 0.7]),
# create 1st y axis
yaxis=dict(
title="yaxis title",
titlefont=dict(color="#1f77b4"),
tickfont=dict(color="#1f77b4")),
# create 2nd y axis
yaxis2=dict(title="yaxis2 title", overlaying="y",
side="left", position=0.15),
# create 3rd y axis
yaxis3=dict(
title="yaxis3 title",
anchor="x", overlaying="y", side="right"))
# title
fig.update_layout(
title_text="Geeksforgeeks - Three y-axes",
width=800,
)
fig.show()
Python3
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6],
name="yaxis1 data"))
fig.add_trace(go.Scatter(x=[2, 3, 4], y=[40, 50, 60],
name="yaxis2 data", yaxis="y2"))
fig.add_trace(go.Scatter(x=[4, 5, 6],
y=[40000, 50000, 60000],
name="yaxis3 data", yaxis="y3"))
fig.add_trace(go.Bar(
x=[5, 6, 7], y=[400000, 500000, 600000],
name="yaxis4 data", yaxis="y4"))
# Create axis objects
fig.update_layout(
xaxis=dict(
domain=[0.3, 0.7]
),
yaxis=dict(
title="yaxis title", titlefont=dict(color="#1f77b4"),
tickfont=dict(color="#1f77b4")),
yaxis2=dict(
title="yaxis2 title",
titlefont=dict(color="#ff7f0e"),
tickfont=dict(color="#ff7f0e"),
anchor="free", overlaying="y",
side="left", position=0.15),
yaxis3=dict(
title="yaxis3 title",
titlefont=dict(color="#d62728"),
tickfont=dict(color="#d62728"),
anchor="x", overlaying="y", side="right"),
yaxis4=dict(
title="yaxis4 title",
titlefont=dict(color="#9467bd"),
tickfont=dict(color="#9467bd"),
anchor="free", overlaying="y",
side="right", position=0.85)
)
# Update layout properties
fig.update_layout(
title_text="Four y-axes",
width=800,
)
fig.show()
输出:
示例 2:三个 Y 轴
在这个例子中,我们要绘制三个数据图,第一个是条形图,另一个是散点图,最后一个是另一个条形图。使用字典和/或关键字参数更新图形布局的属性。我们将在上述每个轴的语法的帮助下定义连续的辅助 y 轴(即yaxis、yaxis2、yaxis3 ...)
Python3
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6],
name="yaxis1 data", yaxis='y'))
fig.add_trace(go.Scatter(x=[2, 3, 5], y=[40, 50, 60],
name="yaxis2 data", yaxis="y2"))
fig.add_trace(go.Bar(x=[4, 5, 6], y=[40000, 50000, 60000],
name="yaxis3 data", yaxis="y3"))
# Create axis objects
fig.update_layout(xaxis=dict(domain=[0.3, 0.7]),
# create 1st y axis
yaxis=dict(
title="yaxis title",
titlefont=dict(color="#1f77b4"),
tickfont=dict(color="#1f77b4")),
# create 2nd y axis
yaxis2=dict(title="yaxis2 title", overlaying="y",
side="left", position=0.15),
# create 3rd y axis
yaxis3=dict(
title="yaxis3 title",
anchor="x", overlaying="y", side="right"))
# title
fig.update_layout(
title_text="Geeksforgeeks - Three y-axes",
width=800,
)
fig.show()
输出:
示例 3:四个 Y 轴
在此示例中,我们将采用两个条形图的数据图和两个散点图的图。使用字典和/或关键字参数更新图形布局的属性。我们将在上述每个轴的语法的帮助下定义连续的辅助 y 轴(即yaxis, yaxis2, yaxis3, yaxis4 )
Python3
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(x=[1, 2, 3], y=[4, 5, 6],
name="yaxis1 data"))
fig.add_trace(go.Scatter(x=[2, 3, 4], y=[40, 50, 60],
name="yaxis2 data", yaxis="y2"))
fig.add_trace(go.Scatter(x=[4, 5, 6],
y=[40000, 50000, 60000],
name="yaxis3 data", yaxis="y3"))
fig.add_trace(go.Bar(
x=[5, 6, 7], y=[400000, 500000, 600000],
name="yaxis4 data", yaxis="y4"))
# Create axis objects
fig.update_layout(
xaxis=dict(
domain=[0.3, 0.7]
),
yaxis=dict(
title="yaxis title", titlefont=dict(color="#1f77b4"),
tickfont=dict(color="#1f77b4")),
yaxis2=dict(
title="yaxis2 title",
titlefont=dict(color="#ff7f0e"),
tickfont=dict(color="#ff7f0e"),
anchor="free", overlaying="y",
side="left", position=0.15),
yaxis3=dict(
title="yaxis3 title",
titlefont=dict(color="#d62728"),
tickfont=dict(color="#d62728"),
anchor="x", overlaying="y", side="right"),
yaxis4=dict(
title="yaxis4 title",
titlefont=dict(color="#9467bd"),
tickfont=dict(color="#9467bd"),
anchor="free", overlaying="y",
side="right", position=0.85)
)
# Update layout properties
fig.update_layout(
title_text="Four y-axes",
width=800,
)
fig.show()
输出: