📜  Python词干和词法化

📅  最后修改于: 2020-12-13 14:16:53             🧑  作者: Mango


在自然语言处理领域,我们遇到了两个或两个以上单词具有共同词根的情况。例如,三个词-同意,同意和同意具有相同的词根同意。涉及这些单词中任何一个的搜索应将它们视为相同的单词,即词根。因此,将所有单词链接到其根词变得至关重要。 NLTK库具有执行此链接并提供显示根词的输出的方法。

下面的程序使用Porter Stemming Algorithm进行词干分析。

import nltk
from nltk.stem.porter import PorterStemmer
porter_stemmer = PorterStemmer()

word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms"
# First Word tokenization
nltk_tokens = nltk.word_tokenize(word_data)
#Next find the roots of the word
for w in nltk_tokens:
       print "Actual: %s  Stem: %s"  % (w,porter_stemmer.stem(w))

当我们执行上面的代码时,它产生以下结果。

Actual: It  Stem: It
Actual: originated  Stem: origin
Actual: from  Stem: from
Actual: the  Stem: the
Actual: idea  Stem: idea
Actual: that  Stem: that
Actual: there  Stem: there
Actual: are  Stem: are
Actual: readers  Stem: reader
Actual: who  Stem: who
Actual: prefer  Stem: prefer
Actual: learning  Stem: learn
Actual: new  Stem: new
Actual: skills  Stem: skill
Actual: from  Stem: from
Actual: the  Stem: the
Actual: comforts  Stem: comfort
Actual: of  Stem: of
Actual: their  Stem: their
Actual: drawing  Stem: draw
Actual: rooms  Stem: room

词法化是类似词干的,但它为单词带来了上下文,因此将具有相似含义的单词与一个单词联系起来可以走得更远。例如,如果某个段落包含汽车,火车和汽车之类的词,则它将所有这些词链接到汽车。在下面的程序中,我们使用WordNet词汇数据库进行词素化。

import nltk
from nltk.stem import WordNetLemmatizer
wordnet_lemmatizer = WordNetLemmatizer()

word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms"
nltk_tokens = nltk.word_tokenize(word_data)
for w in nltk_tokens:
       print "Actual: %s  Lemma: %s"  % (w,wordnet_lemmatizer.lemmatize(w))

当我们执行上面的代码时,它产生以下结果。

Actual: It  Lemma: It
Actual: originated  Lemma: originated
Actual: from  Lemma: from
Actual: the  Lemma: the
Actual: idea  Lemma: idea
Actual: that  Lemma: that
Actual: there  Lemma: there
Actual: are  Lemma: are
Actual: readers  Lemma: reader
Actual: who  Lemma: who
Actual: prefer  Lemma: prefer
Actual: learning  Lemma: learning
Actual: new  Lemma: new
Actual: skills  Lemma: skill
Actual: from  Lemma: from
Actual: the  Lemma: the
Actual: comforts  Lemma: comfort
Actual: of  Lemma: of
Actual: their  Lemma: their
Actual: drawing  Lemma: drawing
Actual: rooms  Lemma: room