给定一棵树,以及所有节点的权重,任务是找到其给定整数X的加权和XOR最大的子树的根。
例子:
Input:
X = 15
Output: 4
Weight of sub-tree for parent 1 = ((-1) + (5) + (-2) + (-1) + (3)) XOR 15 = 4 XOR 15 = 11
Weight of sub-tree for parent 2 = ((5) + (-1) + (3)) XOR 15 = 7 XOR 15 = 8
Weight of sub-tree for parent 3 = -1 XOR 15 = -16
Weight of sub-tree for parent 4 = 3 XOR 15 = 12
Weight of sub-tree for parent 5 = -2 XOR 15 = -15
Node 4 gives the maximum sub-tree weighted sum XOR X.
方法:在树上执行dfs,并为每个节点计算以当前节点为根的子树加权总和,然后找到该节点的最大值(总和XOR X)。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
int ans = 0, maxi = INT_MIN;
vector graph[100];
vector weight(100);
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
void dfs(int node, int parent)
{
for (int to : graph[node]) {
if (to == parent)
continue;
dfs(to, node);
// Calculating the weighted
// sum of the subtree
weight[node] += weight[to];
}
}
// Function to find the node
// having maximum sub-tree sum XOR x
void findMaxX(int n, int x)
{
// For every node
for (int i = 1; i <= n; i++) {
// If current node's weight XOR x
// is maximum so far
if (maxi < (weight[i] ^ x)) {
maxi = (weight[i] ^ x);
ans = i;
}
}
}
// Driver code
int main()
{
int x = 15;
int n = 5;
// Weights of the node
weight[1] = -1;
weight[2] = 5;
weight[3] = -1;
weight[4] = 3;
weight[5] = -2;
// Edges of the tree
graph[1].push_back(2);
graph[2].push_back(3);
graph[2].push_back(4);
graph[1].push_back(5);
dfs(1, 1);
findMaxX(n, x);
cout << ans;
return 0;
}
Java
// Java implementation of the approach
import java.util.*;
class GFG
{
static int ans = 0, maxi = Integer.MIN_VALUE;
static Vector[] graph = new Vector[100];
static Integer[] weight = new Integer[100];
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
static void dfs(int node, int parent)
{
for (int to : graph[node])
{
if (to == parent)
continue;
dfs(to, node);
// Calculating the weighted
// sum of the subtree
weight[node] += weight[to];
}
}
// Function to find the node
// having maximum sub-tree sum XOR x
static void findMaxX(int n, int x)
{
// For every node
for (int i = 1; i <= n; i++)
{
// If current node's weight XOR x
// is maximum so far
if (maxi < (weight[i] ^ x))
{
maxi = (weight[i] ^ x);
ans = i;
}
}
}
// Driver code
public static void main(String[] args)
{
int x = 15;
int n = 5;
for (int i = 0; i < 100; i++)
graph[i] = new Vector();
// Weights of the node
weight[1] = -1;
weight[2] = 5;
weight[3] = -1;
weight[4] = 3;
weight[5] = -2;
// Edges of the tree
graph[1].add(2);
graph[2].add(3);
graph[2].add(4);
graph[1].add(5);
dfs(1, 1);
findMaxX(n, x);
System.out.print(ans);
}
}
// This code is contributed by Rajput-Ji
Python
# Python implementation of the approach
from sys import maxsize
# Function to perform dfs and update the tree
# such that every node's weight is the sum of
# the weights of all the nodes in the sub-tree
# of the current node including itself
def dfs(node, parent):
global maxi, graph, weight, x, ans
for to in graph[node]:
if (to == parent):
continue
dfs(to, node)
# Calculating the weighted
# sum of the subtree
weight[node] += weight[to]
# Function to find the node
# having maximum sub-tree sum XOR x
def findMaxX(n, x):
global maxi, graph, weight, ans
# For every node
for i in range(1, n + 1):
# If current node's weight XOR x
# is maximum so far
if (maxi < (weight[i] ^ x)):
maxi = (weight[i] ^ x)
ans = i
# Driver code
ans = 0
maxi = -maxsize
graph = [[] for i in range(100)]
weight = [0]*100
x = 15
n = 5
# Weights of the node
weight[1] = -1
weight[2] = 5
weight[3] = -1
weight[4] = 3
weight[5] = -2
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
dfs(1, 1)
findMaxX(n, x)
print(ans)
# This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
static int ans = 0, maxi = int.MinValue;
static List[] graph = new List[100];
static int[] weight = new int[100];
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
static void dfs(int node, int parent)
{
foreach (int to in graph[node])
{
if (to == parent)
continue;
dfs(to, node);
// Calculating the weighted
// sum of the subtree
weight[node] += weight[to];
}
}
// Function to find the node
// having maximum sub-tree sum XOR x
static void findMaxX(int n, int x)
{
// For every node
for (int i = 1; i <= n; i++)
{
// If current node's weight XOR x
// is maximum so far
if (maxi < (weight[i] ^ x))
{
maxi = (weight[i] ^ x);
ans = i;
}
}
}
// Driver code
public static void Main(String[] args)
{
int x = 15;
int n = 5;
for (int i = 0; i < 100; i++)
graph[i] = new List();
// Weights of the node
weight[1] = -1;
weight[2] = 5;
weight[3] = -1;
weight[4] = 3;
weight[5] = -2;
// Edges of the tree
graph[1].Add(2);
graph[2].Add(3);
graph[2].Add(4);
graph[1].Add(5);
dfs(1, 1);
findMaxX(n, x);
Console.Write(ans);
}
}
// This code is contributed by PrinciRaj1992
Javascript
输出:
4
复杂度分析:
- 时间复杂度: O(N)。
在dfs中,树的每个节点都处理一次,因此,如果树中总共有N个节点,则由于dfs而导致的复杂度为O(N)。因此,时间复杂度为O(N)。 - 辅助空间: O(n)。
递归堆栈。