📜  找到加权和最小的子树的根

📅  最后修改于: 2021-04-26 07:05:40             🧑  作者: Mango

给定一棵树,以及所有节点的权重,任务是找到加权和最小的子树的根。

例子:

方法:在树上执行dfs,并为每个节点计算以当前节点为根的子树加权总和,然后找到一个节点的最小总和值。

下面是上述方法的实现:

C++
// C++ implementation of the approach
#include 
using namespace std;
  
int ans = 0, mini = INT_MAX;
  
vector graph[100];
vector weight(100);
  
// Function to perform dfs and update the tree
// such that every node's weight is the sum of
// the weights of all the nodes in the sub-tree
// of the current node including itself
void dfs(int node, int parent)
{
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
  
        // Calculating the weighted
        // sum of the subtree
        weight[node] += weight[to];
    }
}
  
// Function to find the node
// having minimum sub-tree sum
void findMin(int n)
{
  
    // For every node
    for (int i = 1; i <= n; i++) {
  
        // If current node's weight
        // is minimum so far
        if (mini > weight[i]) {
            mini = weight[i];
            ans = i;
        }
    }
}
  
// Driver code
int main()
{
    int n = 5;
  
    // Weights of the node
    weight[1] = -1;
    weight[2] = 5;
    weight[3] = -1;
    weight[4] = 3;
    weight[5] = -2;
  
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
  
    dfs(1, 1);
    findMin(n);
  
    cout << ans;
  
    return 0;
}


Java
// Java implementation of the approach 
import java.util.*; 
  
class GFG 
{ 
    static int ans = 0, mini = Integer.MAX_VALUE; 
      
    @SuppressWarnings("unchecked")
    static Vector[] graph = new Vector[100]; 
    static Integer[] weight = new Integer[100]; 
  
    // Function to perform dfs and update the tree 
    // such that every node's weight is the sum of 
    // the weights of all the nodes in the sub-tree 
    // of the current node including itself 
    static void dfs(int node, int parent) 
    { 
        for (int to : graph[node]) 
        { 
            if (to == parent) 
                continue; 
            dfs(to, node); 
  
            // Calculating the weighted 
            // sum of the subtree 
            weight[node] += weight[to]; 
        } 
    } 
  
    // Function to find the node 
    // having minimum sub-tree sum  x 
    static void findMin(int n) 
    { 
  
        // For every node 
        for (int i = 1; i <= n; i++) 
        { 
  
            // If current node's weight  x 
            // is minimum so far 
            if (mini > weight[i]) 
            { 
                mini = weight[i]; 
                ans = i; 
            } 
        } 
    } 
  
    // Driver code 
    public static void main(String[] args) 
    { 
          
        int n = 5; 
        for (int i = 0; i < 100; i++) 
            graph[i] = new Vector(); 
          
        // Weights of the node 
        weight[1] = -1; 
        weight[2] = 5; 
        weight[3] = -1; 
        weight[4] = 3; 
        weight[5] = -2; 
  
        // Edges of the tree 
        graph[1].add(2); 
        graph[2].add(3); 
        graph[2].add(4); 
        graph[1].add(5); 
  
        dfs(1, 1); 
        findMin(n); 
  
        System.out.print(ans); 
    } 
} 
  
// This code is contributed by shubhamsingh10


C#
// C# implementation of the approach 
using System;
using System.Collections.Generic;
  
class GFG 
{ 
    static int ans = 0, mini = int.MaxValue; 
  
    static List[] graph = new List[100]; 
    static int[] weight = new int[100]; 
   
    // Function to perform dfs and update the tree 
    // such that every node's weight is the sum of 
    // the weights of all the nodes in the sub-tree 
    // of the current node including itself 
    static void dfs(int node, int parent) 
    { 
        foreach (int to in graph[node]) 
        { 
            if (to == parent) 
                continue; 
            dfs(to, node); 
   
            // Calculating the weighted 
            // sum of the subtree 
            weight[node] += weight[to]; 
        } 
    } 
   
    // Function to find the node 
    // having minimum sub-tree sum  x 
    static void findMin(int n) 
    { 
   
        // For every node 
        for (int i = 1; i <= n; i++) 
        { 
   
            // If current node's weight  x 
            // is minimum so far 
            if (mini > weight[i]) 
            { 
                mini = weight[i]; 
                ans = i; 
            } 
        } 
    } 
   
    // Driver code 
    public static void Main(String[] args) 
    { 
           
        int n = 5; 
        for (int i = 0; i < 100; i++) 
            graph[i] = new List(); 
           
        // Weights of the node 
        weight[1] = -1; 
        weight[2] = 5; 
        weight[3] = -1; 
        weight[4] = 3; 
        weight[5] = -2; 
   
        // Edges of the tree 
        graph[1].Add(2); 
        graph[2].Add(3); 
        graph[2].Add(4); 
        graph[1].Add(5); 
   
        dfs(1, 1); 
        findMin(n); 
   
        Console.Write(ans); 
    } 
} 
  
// This code is contributed by Rajput-Ji


Python3
# Python3 implementation of the approach
ans = 0
mini = 2**32
  
graph = [[] for i in range(100)] 
weight = [0]*100
  
# Function to perform dfs and update the tree
# such that every node's weight is the sum of
# the weights of all the nodes in the sub-tree
# of the current node including itself
def dfs(node, parent):
    global mini, graph, weight, ans 
    for to in graph[node]: 
        if (to == parent): 
            continue
        dfs(to, node) 
          
        # Calculating the weighted 
        # sum of the subtree 
        weight[node] += weight[to] 
      
# Function to find the node
# having minimum sub-tree sum
def findMin(n):
    global mini, graph, weight, ans 
      
    # For every node
    for i in range(1, n + 1):
          
        # If current node's weight
        # is minimum so far
        if (mini > weight[i]):
            mini = weight[i]
            ans = i
  
# Driver code
n = 5
  
# Weights of the node
weight[1] = -1
weight[2] = 5
weight[3] = -1
weight[4] = 3
weight[5] = -2
  
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
  
dfs(1, 1)
findMin(n)
  
print(ans)
  
# This code is contributed by SHUBHAMSINGH10


输出:
5

复杂度分析:

  • 时间复杂度: O(N)。
    在dfs中,树的每个节点都处理一次,因此,如果树中总共有N个节点,则由于dfs而导致的复杂度为O(N)。因此,时间复杂度为O(N)。
  • 辅助空间: O(n)。
    递归堆栈。