📅  最后修改于: 2023-12-03 15:10:10.419000             🧑  作者: Mango
霍夫曼编码是一种用于有效压缩数据的算法,它将出现频率较高的字符用较短的编码表示,而出现频率较低的字符则用较长的编码表示。霍夫曼编码过程可以通过贪心算法实现。
下面介绍的算法是一种排序输入的有效霍夫曼编码贪婪的算法。
class Node:
def __init__(self, freq, char=None, left=None, right=None):
self.freq = freq # 频率
self.char = char # 字符
self.left = left # 左节点
self.right = right # 右节点
def huffman_encoding(data):
freq = {}
for char in data:
freq[char] = freq.get(char, 0) + 1
nodes = [Node(freq[char], char) for char in freq]
while len(nodes) > 1:
nodes.sort(key=lambda x: x.freq)
left = nodes.pop(0)
right = nodes.pop(0)
parent = Node(left.freq + right.freq, left=left, right=right)
nodes.append(parent)
root = nodes[0]
codes = {}
def encode(node, code):
if node is None:
return
if node.char is not None:
codes[node.char] = code
return
encode(node.left, code + '0')
encode(node.right, code + '1')
encode(root, '')
encoded_data = ''.join(codes[char] for char in data)
return encoded_data, codes
def huffman_decoding(encoded_data, codes):
reverse_codes = {code: char for char, code in codes.items()}
original_data = ''
code = ''
for bit in encoded_data:
code += bit
if code in reverse_codes:
original_data += reverse_codes[code]
code = ''
return original_data
该算法是一种针对输入数据能以有效霍夫曼编码压缩的贪心算法,通过排序输入的字符集合,得到霍夫曼编码的根节点,从而生成有效的霍夫曼编码。