📅  最后修改于: 2023-12-03 15:28:52.729000             🧑  作者: Mango
霍夫曼编码是一种压缩数据的方式,它利用出现频率较高的字符(或者说是信息量大的字符)用较短的编码表示,而用较长的编码表示出现频率较低的字符(或者说是信息量小的字符),这样就可以使得整个文本的编码长度变短,从而达到压缩数据的目的。
霍夫曼编码是通过构建霍夫曼树来实现的。构建霍夫曼树的过程如下:
得到霍夫曼树后,对每个叶子节点进行编码,可以使用任意长度的二进制位表示。为了保证编码的唯一性,霍夫曼编码规则是:从根节点到每个叶子节点的路径上标上0或1,每个叶子节点的编码就是由路径上经过的0和1组成的二进制串。
下面是一个简单的实现霍夫曼编码的Python代码片段:
from heapq import heappush, heappop, heapify
from collections import defaultdict
import sys
class Node:
def __init__(self, freq, char=''):
self.freq = freq
self.char = char
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
class Huffman:
def __init__(self):
self.heap = []
self.codes = {}
self.reverse_mapping = {}
def make_frequency_dict(self, text):
frequency = defaultdict(int)
for character in text:
frequency[character] += 1
return frequency
def make_heap(self, frequency):
for key in frequency:
node = Node(frequency[key], key)
heappush(self.heap, node)
def merge_nodes(self):
while len(self.heap) > 1:
node1 = heappop(self.heap)
node2 = heappop(self.heap)
merged = Node(node1.freq + node2.freq)
merged.left = node1
merged.right = node2
heappush(self.heap, merged)
def make_codes_helper(self, root, current_code):
if root is None:
return
if root.char != '':
self.codes[root.char] = current_code
self.reverse_mapping[current_code] = root.char
return
self.make_codes_helper(root.left, current_code + '0')
self.make_codes_helper(root.right, current_code + '1')
def make_codes(self):
root = heappop(self.heap)
current_code = ''
self.make_codes_helper(root, current_code)
def get_encoded_text(self, text):
encoded_text = ''
for character in text:
encoded_text += self.codes[character]
return encoded_text
def pad_encoded_text(self, encoded_text):
extra_padding = 8 - len(encoded_text) % 8
for i in range(extra_padding):
encoded_text += '0'
padding_info = "{0:08b}".format(extra_padding)
encoded_text = padding_info + encoded_text
return encoded_text
def get_byte_array(self, padded_encoded_text):
if len(padded_encoded_text) % 8 != 0:
print("Encoded text not padded properly")
sys.exit(0)
b = bytearray()
for i in range(0, len(padded_encoded_text), 8):
byte = padded_encoded_text[i:i+8]
b.append(int(byte, 2))
return b
def compress(self, text):
frequency = self.make_frequency_dict(text)
self.make_heap(frequency)
self.merge_nodes()
self.make_codes()
encoded_text = self.get_encoded_text(text)
padded_encoded_text = self.pad_encoded_text(encoded_text)
byte_array = self.get_byte_array(padded_encoded_text)
return byte_array
霍夫曼编码是一种常见的压缩数据的方式,它能够有效地减少数据的体积,提高数据传输的效率。在实现过程中,需要首先构建霍夫曼树,然后对每个叶子节点进行编码。虽然实现过程相对复杂,但是霍夫曼编码的原理和实现流程是非常重要而值得学习的。