📅  最后修改于: 2023-12-03 15:12:50.900000             🧑  作者: Mango
霍夫曼编码算法是一种数据压缩算法,在通信与存储应用中广泛使用,能够将数据压缩至原始数据的几分之一。
霍夫曼编码算法的原理是通过建立霍夫曼树,将出现频率较高的字符使用较短的编码,出现频率较低的字符使用较长的编码,从而实现数据的压缩。
具体过程如下:
以下是 Python 代码片段,实现了霍夫曼编码的压缩和解压缩功能。
import heapq
import os
class HuffmanCoding:
def __init__(self, file_path):
self.file_path = file_path
self.heap = []
self.codes = {}
self.rev_codes = {}
class HeapNode:
def __init__(self, freq, char=None):
self.freq = freq
self.char = char
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
def make_freq_dict(self, text):
freq_dict = {}
for char in text:
freq_dict[char] = freq_dict.get(char, 0) + 1
return freq_dict
def create_heap(self, freq_dict):
for char in freq_dict:
node = self.HeapNode(freq_dict[char], char)
heapq.heappush(self.heap, node)
def merge_nodes(self):
while len(self.heap) > 1:
node1 = heapq.heappop(self.heap)
node2 = heapq.heappop(self.heap)
merged_node = self.HeapNode(node1.freq + node2.freq)
merged_node.left = node1
merged_node.right = node2
heapq.heappush(self.heap, merged_node)
def make_codes_helper(self, root, current_code):
if root is None:
return
if root.char is not None:
self.codes[root.char] = current_code
self.rev_codes[current_code] = root.char
return
self.make_codes_helper(root.left, current_code + "0")
self.make_codes_helper(root.right, current_code + "1")
def make_codes(self):
root = heapq.heappop(self.heap)
current_code = ""
self.make_codes_helper(root, current_code)
def get_encoded_text(self, text):
encoded_text = ""
for char in text:
encoded_text += self.codes[char]
return encoded_text
def pad_encoded_text(self, encoded_text):
padding_len = 8 - len(encoded_text) % 8
for i in range(padding_len):
encoded_text += "0"
padding_info = "{0:08b}".format(padding_len)
encoded_text = padding_info + encoded_text
return encoded_text
def get_byte_array(self, padded_encoded_text):
byte_array = bytearray()
for i in range(0, len(padded_encoded_text), 8):
byte = padded_encoded_text[i:i + 8]
byte_array.append(int(byte, 2))
return byte_array
def compress(self):
filename, file_extension = os.path.splitext(self.file_path)
output_file_path = filename + ".bin"
with open(self.file_path, "r") as file, open(output_file_path, "wb") as output:
text = file.read()
freq_dict = self.make_freq_dict(text)
self.create_heap(freq_dict)
self.merge_nodes()
self.make_codes()
encoded_text = self.get_encoded_text(text)
padded_encoded_text = self.pad_encoded_text(encoded_text)
byte_array = self.get_byte_array(padded_encoded_text)
output.write(bytes(byte_array))
print("Compressed!")
return output_file_path
class HuffmanCoding:
# ...
def decode_text(self, encoded_text):
current_code = ""
decoded_text = ""
for bit in encoded_text:
current_code += bit
if current_code in self.rev_codes:
char = self.rev_codes[current_code]
decoded_text += char
current_code = ""
return decoded_text
def unpad_encoded_text(self, padded_encoded_text):
padding_info = padded_encoded_text[:8]
padding_len = int(padding_info, 2)
padded_encoded_text = padded_encoded_text[8:]
unpadded_encoded_text = padded_encoded_text[:-1 * padding_len]
return unpadded_encoded_text
def decompress(self, input_file_path):
filename, file_extension = os.path.splitext(input_file_path)
output_file_path = filename + "_decompressed" + ".txt"
with open(input_file_path, "rb") as file, open(output_file_path, "w") as output:
bit_string = ""
byte = file.read(1)
while byte:
byte = ord(byte)
bits = bin(byte)[2:].rjust(8, '0')
bit_string += bits
byte = file.read(1)
unpadded_encoded_text = self.unpad_encoded_text(bit_string)
decoded_text = self.decode_text(unpadded_encoded_text)
output.write(decoded_text)
print("Decompressed!")
return output_file_path
霍夫曼编码算法的压缩率与数据出现的频率分布有关,对于出现频率较高的字符,霍夫曼编码能够显著地压缩数据,而对于出现频率很低的字符,霍夫曼编码所得的编码则可能会比原始编码更长。
在通常情况下,使用霍夫曼编码算法可以将数据压缩至原始数据的约 $\frac{1}{3}$。