📅  最后修改于: 2023-12-03 15:12:38.390000             🧑  作者: Mango
本次考试的主题是“门”,主要考察程序员在门类问题的解决方案和实现能力。以下是关于本次考试的介绍和参考思路。
本次考试涉及到两个问题:
这个问题可以用最短路径算法来解决。常见的算法有:
其中,A算法可能更适合这个问题。因为它可以在很短的时间内找到最短路径,并且对于复杂的网格图,它也可以给出较好的近似解。但是,需要注意的是,A算法可能会受到启发式函数的影响,导致不一定能找到全局最优解。
这个问题可以用最短路径算法来解决。同样,常见的算法有:
其中,Floyd-Warshall算法可以在O(n^3)的时间复杂度内解决所有的询问。但是,需要注意的是,对于非常大的有向图,Floyd-Warshall算法可能会受到空间限制,导致无法实现。
如果需要快速的解决方案,可以考虑使用Dijkstra算法或者Bellman-Ford算法。这两个算法都需要预处理一遍,然后可以在较短的时间内解决每个询问。
def a_star(start, end, graph):
def heuristic(n1, n2):
return abs(n1[0] - n2[0]) + abs(n1[1] - n2[1])
open_list = set([start])
closed_list = set()
g = {}
g[start] = 0
parents = {}
parents[start] = start
while len(open_list) > 0:
n = None
for v in open_list:
if n == None or g[v] + heuristic(v, end) < g[n] + heuristic(n, end):
n = v;
if n == None:
print('Path does not exist!')
return None
if n == end:
path = []
while parents[n] != n:
path.append(n)
n = parents[n]
path.append(start)
path.reverse()
print('Path found: {}'.format(path))
return path
for (m, weight) in graph[n]:
if m not in open_list and m not in closed_list:
open_list.add(m)
parents[m] = n
g[m] = g[n] + weight
else:
if g[m] > g[n] + weight:
g[m] = g[n] + weight
parents[m] = n
if m in closed_list:
closed_list.remove(m)
open_list.add(m)
open_list.remove(n)
closed_list.add(n)
print('Path does not exist!')
return None
def bellman_ford(graph, start):
#initialize distance to all vertices as infinite and distance to source as 0
distance = {v: float('infinity') for v in graph}
distance[start] = 0
#relax all edges |V| - 1 times, where |V| is the number of vertices
for i in range(len(graph)-1):
for u in graph:
for v, w in graph[u]:
if distance[u] + w < distance[v]:
distance[v] = distance[u] + w
return distance
def shortest_path(graph, start, end):
dist = bellman_ford(graph, start)
path = []
while end != start:
path.append(end)
end = dist[end][1]
path.append(start)
path.reverse()
return path