📌  相关文章
📜  通过添加单个边来最大化给定顶点之间的最短路径

📅  最后修改于: 2021-04-29 10:01:57             🧑  作者: Mango

给定N个节点和M个顶点的无向图。还为您提供了K个edge作为selected [] 。通过在给定选定边的任意两个顶点之间添加单个边来最大化节点1到节点N之间最短路径长度的任务。
注意:可以在任意两个选定顶点之间添加一条边,而这些顶点之间已经有一条边。

方法:想法是使用广度优先搜索来找到从顶点1N到每个选定顶点的距离。对于选定的顶点i,让x i表示到节点1的距离,而y i表示到节点N的距离。步骤如下:

  1. 维护一个具有2N列的2D矩阵(例如dist [2] [] )。
  2. 在第一行中,使用BFS遍历保持节点1和图中其他顶点之间的最短距离。
  3. 在第二行中,使用BFS遍历保持节点N和图形的其他顶点之间的最短距离。
  4. 现在,从selected []中选择两个选定的顶点ab ,以最小化min(xa + yb,ya + xb)的值。为此,请执行以下操作:
    • 创建一个向量对,并将(x i – y i )的值与它们各自的选定节点一起存储。
    • 对以上向量对进行排序。
    • 最佳初始化为0最大初始化为-INF
    • 现在遍历上述向量对,并针对每个选定节点(例如a)将best的值更新为(best,max + dist [1] [a])的最大值,并将max的值更新为(max,dist [0]的最大值[一种])。
  5. 经过上述操作后,最大(dist [0] [N-1]和best + 1)给出了最短路径。

下面是上述方法的实现:

C++
// C++ program for the above approach
#include 
using namespace std;
const int INF = 1e9 + 7;
int N, M;
 
// To store graph as adjacency list
vector edges[200005];
 
// To store the shortest path
int dist[2][200000];
 
// Function that performs BFS Traversal
void bfs(int* dist, int s)
{
    int q[200000];
 
    // Fill initially each distance as INF
    fill(dist, dist + N, INF);
    int qh = 0, qt = 0;
    q[qh++] = s;
    dist[s] = 0;
 
    // Perform BFS
    while (qt < qh) {
 
        int x = q[qt++];
 
        // Traverse the current edges
        for (int y : edges[x]) {
            if (dist[y] == INF) {
 
                // Update the distance
                dist[y] = dist[x] + 1;
 
                // Insert in queue
                q[qh++] = y;
            }
        }
    }
}
 
// Function that maximizes the shortest
// path between source and destination
// vertex by adding a single edge between
// given selected nodes
void shortestPathCost(int selected[], int K)
{
    vector > data;
 
    // To update the shortest distance
    // between node 1 to other vertices
    bfs(dist[0], 0);
 
    // To update the shortest distance
    // between node N to other vertices
    bfs(dist[1], N - 1);
 
    for (int i = 0; i < K; i++) {
 
        // Store the values x[i] - y[i]
        data.emplace_back(dist[0][selected[i]]
                              - dist[1][selected[i]],
                          selected[i]);
    }
 
    // Sort all the vectors of pairs
    sort(data.begin(), data.end());
    int best = 0;
    int MAX = -INF;
 
    // Traverse data[]
    for (auto it : data) {
        int a = it.second;
        best = max(best,
                   MAX + dist[1][a]);
 
        // Maximize x[a] - y[b]
        MAX= max(MAX, dist[0][a]);
    }
 
    // Print minimum cost
    printf("%d\n", min(dist[0][N - 1], best + 1));
}
 
// Driver Code
int main()
{
    // Given nodes and edges
    N = 5, M = 4;
    int K = 2;
    int selected[] = { 1, 3 };
 
    // Sort the selected nodes
    sort(selected, selected + K);
 
    // Given edges
    edges[0].push_back(1);
    edges[1].push_back(0);
    edges[1].push_back(2);
    edges[2].push_back(1);
    edges[2].push_back(3);
    edges[3].push_back(2);
    edges[3].push_back(4);
    edges[4].push_back(3);
 
    // Function Call
    shortestPathCost(selected, K);
    return 0;
}


Java
// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
static int INF = (int)1e9 + 7;
static int N, M;
   
// To store graph as adjacency list
static ArrayList> edges;
   
// To store the shortest path
static int[][] dist = new int[2][200000];
   
// Function that performs BFS Traversal
static void bfs(int[] dist, int s)
{
    int[] q = new int[200000];
   
    // Fill initially each distance as INF
    Arrays.fill(dist, INF);
     
    int qh = 0, qt = 0;
    q[qh++] = s;
    dist[s] = 0;
   
    // Perform BFS
    while (qt < qh)
    {
        int x = q[qt++];
   
        // Traverse the current edges
        for(Integer y : edges.get(x))
        {
            if (dist[y] == INF)
            {
                 
                // Update the distance
                dist[y] = dist[x] + 1;
   
                // Insert in queue
                q[qh++] = y;
            }
        }
    }
}
   
// Function that maximizes the shortest
// path between source and destination
// vertex by adding a single edge between
// given selected nodes
static void shortestPathCost(int selected[], int K)
{
    ArrayList data = new ArrayList<>();
   
    // To update the shortest distance
    // between node 1 to other vertices
    bfs(dist[0], 0);
   
    // To update the shortest distance
    // between node N to other vertices
    bfs(dist[1], N - 1);
   
    for(int i = 0; i < K; i++)
    {
         
        // Store the values x[i] - y[i]
        data.add(new int[]{dist[0][selected[i]] -
                           dist[1][selected[i]],
                                   selected[i]});
    }
   
    // Sort all the vectors of pairs
    Collections.sort(data, (a, b) -> a[0] - b[0]);
    int best = 0;
    int MAX = -INF;
   
    // Traverse data[]
    for(int[] it : data)
    {
        int a = it[1];
        best = Math.max(best,
                        MAX + dist[1][a]);
   
        // Maximize x[a] - y[b]
        MAX = Math.max(MAX, dist[0][a]);
    }
     
    // Print minimum cost
    System.out.println(Math.min(dist[0][N - 1],
                                     best + 1));
}
 
// Driver code
public static void main (String[] args)
{
     
    // Given nodes and edges
    N = 5; M = 4;
    int K = 2;
    int selected[] = { 1, 3 };
     
    // Sort the selected nodes
    Arrays.sort(selected);
     
    edges = new ArrayList<>();
     
    for(int i = 0; i < 200005; i++)
        edges.add(new ArrayList());
     
    // Given edges
    edges.get(0).add(1);
    edges.get(1).add(0);
    edges.get(1).add(2);
    edges.get(2).add(1);
    edges.get(2).add(3);
    edges.get(3).add(2);
    edges.get(3).add(4);
    edges.get(4).add(3);
     
    // Function Call
    shortestPathCost(selected, K);
}
}
 
// This code is contributed by offbeat


Python3
# Python3 program for the above approach
 
# Function that performs BFS Traversal
def bfs(x, s):
    global edges, dist
    q = [0 for i in range(200000)]
 
    # Fill initially each distance as INF
    # fill(dist, dist + N, INF)
    qh, qt = 0, 0
    q[qh] = s
    qh += 1
    dist[x][s] = 0
 
    # Perform BFS
    while (qt < qh):
        xx = q[qt]
        qt += 1
 
        # Traverse the current edges
        for y in edges[xx]:
            if (dist[x][y] == 10**18):
 
                # Update the distance
                dist[x][y] = dist[x][xx] + 1
 
                # Insert in queue
                q[qh] = y
                qh += 1
 
# Function that maximizes the shortest
# path between source and destination
# vertex by adding a single edge between
# given selected nodes
def shortestPathCost(selected, K):
    global dist, edges
    data = []
 
    # To update the shortest distance
    # between node 1 to other vertices
    bfs(0, 0)
 
    # To update the shortest distance
    # between node N to other vertices
    bfs(1, N - 1)
    for i in range(K):
 
        # Store the values x[i] - y[i]
        data.append([dist[0][selected[i]]- dist[1][selected[i]], selected[i]])
 
    # Sort all the vectors of pairs
    data = sorted(data)
    best = 0
    MAX = -10**18
 
    # Traverse data[]
    for it in data:
        a = it[1]
        best = max(best,MAX + dist[1][a])
 
        # Maximize x[a] - y[b]
        MAX= max(MAX, dist[0][a])
 
    # Prminimum cost
    print(min(dist[0][N - 1], best + 1))
 
# Driver Code
if __name__ == '__main__':
 
    # Given nodes and edges
    edges = [[] for i in range(5)]
    dist = [[10**18 for i in range(1000005)] for i in range(2)]
    N,M = 5, 4
    K = 2
    selected = [1, 3]
 
    # Sort the selected nodes
    selected = sorted(selected)
 
    # Given edges
    edges[0].append(1)
    edges[1].append(0)
    edges[1].append(2)
    edges[2].append(1)
    edges[2].append(3)
    edges[3].append(2)
    edges[3].append(4)
    edges[4].append(3)
 
    # Function Call
    shortestPathCost(selected, K)
 
    # This code is contributed by mohit kumar 29


输出:
3

时间复杂度: O(N * log N + M)
辅助空间: O(N)