📜  K人的活动选择问题(1)

📅  最后修改于: 2023-12-03 15:02:33.832000             🧑  作者: Mango

K人的活动选择问题

在组织一次活动时,我们需要考虑的是如何让K个人选择其中的几项活动。这是一个典型的组合优化问题,需要用到计算机程序来求解。

算法介绍

常见的算法有贪心算法、动态规划算法、回溯算法、遗传算法等,其中贪心算法是最为常见的解法之一。

贪心算法

贪心算法是一种在每一步选择中都采取当前状态下最优的选择,从而希望最终能够得到全局最优解的策略。

对于K人选择活动的问题,一个可行的贪心策略是:对于每个人,选择其可以参加的且剩余人数最多的活动。

实现贪心算法的代码如下(假设活动数据存储在一个二维列表activities中,每行表示一个活动,每行第一列为该活动剩余人数,后面为可以参加该活动的人的编号):

def greedy_algorithm(activities, k):
    selected = []
    for i in range(k):
        max_index = 0
        for j in range(1, len(activities)):
            if activities[j][0] > activities[max_index][0] and i+1 in activities[j][1:]:
                max_index = j
        selected.append(max_index)
        for m in range(1, len(activities[max_index])):
            for n in range(1, len(activities)):
                if n != max_index:
                    activities[n] = [x for x in activities[n] if x != activities[max_index][m]]
        activities[max_index][0] = 0
    return selected
动态规划算法

动态规划算法是一种在求解问题时,通过把问题分解成多个子问题的方式,逐步求解子问题,最终得到全局最优解的策略。

在K人选择活动的问题中,一种可行的动态规划策略是:设f(i,j)表示前i个人选择活动j时的最大收益(即参与活动的总人数),则有:

$$f(i,j)=\max{f(i-1,j),f(i-1,j')+k_j|j'\in C_i}$$

其中,C(i)表示第i个人可以参加的活动集合,kj为第j个活动剩余人数。

实现动态规划算法的代码如下:

def dynamic_algorithm(activities, k):
    dp = [[0] * len(activities) for _ in range(k+1)]
    for i in range(1, k+1):
        for j in range(1, len(activities)):
            dp[i][j] = dp[i][j-1]
            for p in activities[j][1:]:
                if i == 1:
                    dp[i][j] += 1
                elif j > 1:
                    dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1)
    selected = []
    i = k
    j = len(activities)-1
    while i > 0 and j > 0:
        if dp[i][j] == dp[i][j-1]:
            j -= 1
        else:
            selected.append(j)
            for t in range(1, len(activities[j])):
                for q in range(len(activities)):
                    if q != j:
                        activities[q] = [x for x in activities[q] if x != activities[j][t]]
            i -= 1
            j -= 1
    selected.reverse()
    return selected
回溯算法

回溯算法是通过不断地尝试某些可能的解并逐步构建问题的解,当构建到某步发现已经不能得到可行解时,就退回上一步重新尝试新的解的策略。

对于K人选择活动的问题,回溯算法的思路是:对于每个人,依次尝试参加各种活动,并从中选出一种最优的方案。

实现回溯算法的代码如下:

def backtrack_algorithm(activities, k):
    def backtrack(selected, index):
        nonlocal max_people, best_solution
        if index == k:
            if selected not in best_solution:
                best_solution.append(selected)
            return
        for i in range(1, len(activities)):
            if i not in selected and index+1 in activities[i][1:]:
                selected_copy = selected.copy()
                selected_copy.append(i)
                backtrack(selected_copy, index+1)
        if len(selected) > max_people:
            max_people = len(selected)
            best_solution = [selected]
        elif len(selected) == max_people and selected not in best_solution:
            best_solution.append(selected)
    max_people = 0
    best_solution = []
    backtrack([], 0)
    return best_solution[0]
遗传算法

遗传算法是一种通过模拟进化过程,不断筛选优秀基因并结合产生新基因,从而达到优化问题的目的的策略。

对于K人选择活动的问题,遗传算法的思路是:将每个参与活动的人抽象为一条染色体,通过交叉、变异等操作生成新的染色体,并筛选出适应度最高的染色体作为最优解。

实现遗传算法的代码如下:

import random

def genetic_algorithm(activities, k):
    # 生成初始种群
    def generate_population(size):
        population = []
        for i in range(size):
            chromosome = []
            for j in range(1, len(activities)):
                if random.random() < 0.5:
                    chromosome.append(j)
            population.append(chromosome)
        return population

    # 计算染色体适应度
    def fitness(chromosome):
        people = set()
        for gene in chromosome:
            for person in activities[gene][1:]:
                people.add(person)
        return len(people)

    # 选择优秀个体
    def select(population):
        size = len(population)
        fitnesses = [fitness(chromosome) for chromosome in population]
        total_fitness = sum(fitnesses)
        probabilities = [fitness/total_fitness for fitness in fitnesses]
        cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(size)]
        new_population = []
        for i in range(size):
            r = random.random()
            for j in range(size):
                if r < cumulative_probabilities[j]:
                    new_population.append(population[j])
                    break
        return new_population

    # 交叉染色体
    def crossover(chromosome1, chromosome2):
        size = len(chromosome1)
        crossover_point = random.randint(1, size-1)
        return chromosome1[:crossover_point] + chromosome2[crossover_point:]

    # 变异染色体
    def mutate(chromosome):
        size = len(chromosome)
        mutation_point = random.randint(0, size-1)
        if random.random() < 0.5:
            if chromosome[mutation_point] not in selected_activities:
                chromosome[mutation_point] = random.choice(selected_activities)
        else:
            del chromosome[mutation_point]
        return chromosome

    # 遗传算法主体
    selected_activities = set()
    for i in range(k):
        max_index = 0
        for j in range(1, len(activities)):
            if activities[j][0] > activities[max_index][0] and i+1 in activities[j][1:]:
                max_index = j
        selected_activities.add(max_index)
    population = generate_population(50)
    for i in range(100):
        population = select(population)
        new_population = []
        for j in range(25):
            chromosome1 = random.choice(population)
            chromosome2 = random.choice(population)
            new_chromosome = crossover(chromosome1, chromosome2)
            if random.random() < 0.1:
                new_chromosome = mutate(new_chromosome)
            new_population.append(new_chromosome)
        population += new_population
    fitnesses = [fitness(chromosome) for chromosome in population]
    best_index = fitnesses.index(max(fitnesses))
    return population[best_index]
如何选择算法

实际应用时,我们需要根据实际情况选择合适的算法。贪心算法虽然速度较快,但结果可能不是全局最优解,适用于问题规模较小且结果不要求完全正确的情况。动态规划算法保证能够得到全局最优解,但时间复杂度较高,适用于问题规模较小的情况。回溯算法能够得到所有可行解,但时间复杂度非常高,适用于问题规模较小、结果要求完全正确的情况。遗传算法能够找到较优解,时间复杂度较高,适用于问题规模较大的情况。