📅  最后修改于: 2023-12-03 15:02:33.832000             🧑  作者: Mango
在组织一次活动时,我们需要考虑的是如何让K个人选择其中的几项活动。这是一个典型的组合优化问题,需要用到计算机程序来求解。
常见的算法有贪心算法、动态规划算法、回溯算法、遗传算法等,其中贪心算法是最为常见的解法之一。
贪心算法是一种在每一步选择中都采取当前状态下最优的选择,从而希望最终能够得到全局最优解的策略。
对于K人选择活动的问题,一个可行的贪心策略是:对于每个人,选择其可以参加的且剩余人数最多的活动。
实现贪心算法的代码如下(假设活动数据存储在一个二维列表activities中,每行表示一个活动,每行第一列为该活动剩余人数,后面为可以参加该活动的人的编号):
def greedy_algorithm(activities, k):
selected = []
for i in range(k):
max_index = 0
for j in range(1, len(activities)):
if activities[j][0] > activities[max_index][0] and i+1 in activities[j][1:]:
max_index = j
selected.append(max_index)
for m in range(1, len(activities[max_index])):
for n in range(1, len(activities)):
if n != max_index:
activities[n] = [x for x in activities[n] if x != activities[max_index][m]]
activities[max_index][0] = 0
return selected
动态规划算法是一种在求解问题时,通过把问题分解成多个子问题的方式,逐步求解子问题,最终得到全局最优解的策略。
在K人选择活动的问题中,一种可行的动态规划策略是:设f(i,j)表示前i个人选择活动j时的最大收益(即参与活动的总人数),则有:
$$f(i,j)=\max{f(i-1,j),f(i-1,j')+k_j|j'\in C_i}$$
其中,C(i)表示第i个人可以参加的活动集合,kj为第j个活动剩余人数。
实现动态规划算法的代码如下:
def dynamic_algorithm(activities, k):
dp = [[0] * len(activities) for _ in range(k+1)]
for i in range(1, k+1):
for j in range(1, len(activities)):
dp[i][j] = dp[i][j-1]
for p in activities[j][1:]:
if i == 1:
dp[i][j] += 1
elif j > 1:
dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1)
selected = []
i = k
j = len(activities)-1
while i > 0 and j > 0:
if dp[i][j] == dp[i][j-1]:
j -= 1
else:
selected.append(j)
for t in range(1, len(activities[j])):
for q in range(len(activities)):
if q != j:
activities[q] = [x for x in activities[q] if x != activities[j][t]]
i -= 1
j -= 1
selected.reverse()
return selected
回溯算法是通过不断地尝试某些可能的解并逐步构建问题的解,当构建到某步发现已经不能得到可行解时,就退回上一步重新尝试新的解的策略。
对于K人选择活动的问题,回溯算法的思路是:对于每个人,依次尝试参加各种活动,并从中选出一种最优的方案。
实现回溯算法的代码如下:
def backtrack_algorithm(activities, k):
def backtrack(selected, index):
nonlocal max_people, best_solution
if index == k:
if selected not in best_solution:
best_solution.append(selected)
return
for i in range(1, len(activities)):
if i not in selected and index+1 in activities[i][1:]:
selected_copy = selected.copy()
selected_copy.append(i)
backtrack(selected_copy, index+1)
if len(selected) > max_people:
max_people = len(selected)
best_solution = [selected]
elif len(selected) == max_people and selected not in best_solution:
best_solution.append(selected)
max_people = 0
best_solution = []
backtrack([], 0)
return best_solution[0]
遗传算法是一种通过模拟进化过程,不断筛选优秀基因并结合产生新基因,从而达到优化问题的目的的策略。
对于K人选择活动的问题,遗传算法的思路是:将每个参与活动的人抽象为一条染色体,通过交叉、变异等操作生成新的染色体,并筛选出适应度最高的染色体作为最优解。
实现遗传算法的代码如下:
import random
def genetic_algorithm(activities, k):
# 生成初始种群
def generate_population(size):
population = []
for i in range(size):
chromosome = []
for j in range(1, len(activities)):
if random.random() < 0.5:
chromosome.append(j)
population.append(chromosome)
return population
# 计算染色体适应度
def fitness(chromosome):
people = set()
for gene in chromosome:
for person in activities[gene][1:]:
people.add(person)
return len(people)
# 选择优秀个体
def select(population):
size = len(population)
fitnesses = [fitness(chromosome) for chromosome in population]
total_fitness = sum(fitnesses)
probabilities = [fitness/total_fitness for fitness in fitnesses]
cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(size)]
new_population = []
for i in range(size):
r = random.random()
for j in range(size):
if r < cumulative_probabilities[j]:
new_population.append(population[j])
break
return new_population
# 交叉染色体
def crossover(chromosome1, chromosome2):
size = len(chromosome1)
crossover_point = random.randint(1, size-1)
return chromosome1[:crossover_point] + chromosome2[crossover_point:]
# 变异染色体
def mutate(chromosome):
size = len(chromosome)
mutation_point = random.randint(0, size-1)
if random.random() < 0.5:
if chromosome[mutation_point] not in selected_activities:
chromosome[mutation_point] = random.choice(selected_activities)
else:
del chromosome[mutation_point]
return chromosome
# 遗传算法主体
selected_activities = set()
for i in range(k):
max_index = 0
for j in range(1, len(activities)):
if activities[j][0] > activities[max_index][0] and i+1 in activities[j][1:]:
max_index = j
selected_activities.add(max_index)
population = generate_population(50)
for i in range(100):
population = select(population)
new_population = []
for j in range(25):
chromosome1 = random.choice(population)
chromosome2 = random.choice(population)
new_chromosome = crossover(chromosome1, chromosome2)
if random.random() < 0.1:
new_chromosome = mutate(new_chromosome)
new_population.append(new_chromosome)
population += new_population
fitnesses = [fitness(chromosome) for chromosome in population]
best_index = fitnesses.index(max(fitnesses))
return population[best_index]
实际应用时,我们需要根据实际情况选择合适的算法。贪心算法虽然速度较快,但结果可能不是全局最优解,适用于问题规模较小且结果不要求完全正确的情况。动态规划算法保证能够得到全局最优解,但时间复杂度较高,适用于问题规模较小的情况。回溯算法能够得到所有可行解,但时间复杂度非常高,适用于问题规模较小、结果要求完全正确的情况。遗传算法能够找到较优解,时间复杂度较高,适用于问题规模较大的情况。