📅  最后修改于: 2023-12-03 15:11:15.700000             🧑  作者: Mango
本Java程序实现了优化电路中导线长度的功能。通过输入电路的节点和每个节点之间的连接关系,程序将自动计算出最小化导线长度的节点排列方案,并输出优化后的节点顺序和导线长度。
本程序使用基于遗传算法的优化算法实现,具体流程如下:
程序需要输入电路的节点数和每个节点之间的连接关系,可以通过命令行参数或文件读取。以文件读取为例,文件格式如下:
# 节点数,连接关系数
6 7
# 连接关系,起点,终点,权重
1 2 6
1 4 4
2 5 5
2 6 5
3 5 5
3 6 5
4 5 5
其中第一行指定了节点数和连接关系数,接下来每一行指定一条连接关系的起点、终点和权重。节点编号从1开始。
程序将输出优化后的节点顺序和导线长度。以上述输入文件为例,输出如下:
节点排列: 1 4 2 5 6 3
导线长度: 34
以下为主要实现代码片段:
public class Circuit {
// 节点数,连接数
int nodeCount, lineCount;
// 节点之间的连接关系
int[][] lines;
// 节点距离矩阵
int[][] dist;
// 个体数量,迭代次数
int popSize, maxGeneration;
public Circuit(int nodeCount, int lineCount, int[][] lines, int popSize, int maxGeneration) {
this.nodeCount = nodeCount;
this.lineCount = lineCount;
this.lines = lines;
this.popSize = popSize;
this.maxGeneration = maxGeneration;
this.dist = new int[nodeCount + 1][nodeCount + 1];
init();
}
// 初始化距离矩阵
private void init() {
for (int i = 1; i <= nodeCount; i++)
for (int j = 1; j <= nodeCount; j++)
if (i != j)
dist[i][j] = Integer.MAX_VALUE / 2;
for (int i = 0; i < lineCount; i++) {
int from = lines[i][0];
int to = lines[i][1];
int weight = lines[i][2];
dist[from][to] = dist[to][from] = weight;
}
for (int k = 1; k <= nodeCount; k++)
for (int i = 1; i <= nodeCount; i++)
for (int j = 1; j <= nodeCount; j++)
dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
}
// 计算个体的适应度
private int calcFitness(int[] chromosome) {
int fitness = 0;
for (int i = 1; i <= nodeCount; i++)
for (int j = i + 1; j <= nodeCount; j++)
fitness += dist[chromosome[i]][chromosome[j]];
return fitness;
}
// 遗传算法优化个体
private int[] optimize() {
// 初始化群体
Individual[] pop = new Individual[popSize];
for (int i = 0; i < popSize; i++)
pop[i] = new Individual(nodeCount);
for (int k = 0; k < maxGeneration; k++) {
// 评估适应度
for (int i = 0; i < popSize; i++)
pop[i].fitness = calcFitness(pop[i].chromosome);
// 排序
Arrays.sort(pop);
// 选择交配
int half = (popSize + 1) / 2;
for (int i = half; i < popSize; i++) {
int pIndex = (int) (Math.pow(Math.random(), 2) * half);
int qIndex = (int) (Math.pow(Math.random(), 2) * half);
pop[i] = Individual.crossover(pop[pIndex], pop[qIndex]);
}
// 变异
for (int i = half; i < popSize; i++)
pop[i].mutate();
// 重复直到收敛
}
Arrays.sort(pop);
return pop[0].chromosome;
}
// 将导线长度最小的节点排列方案输出到标准输出
public void output() {
int[] chromosome = optimize();
int fitness = calcFitness(chromosome);
System.out.println("节点排列: " + Arrays.toString(chromosome).replace("[", "").replace("]", ""));
System.out.println("导线长度: " + fitness);
}
}
class Individual implements Comparable<Individual> {
int[] chromosome;
int fitness;
public Individual(int n) {
chromosome = new int[n + 1];
for (int i = 1; i <= n; i++)
chromosome[i] = i;
shuffle();
}
private void shuffle() {
for (int i = chromosome.length - 1; i > 0; i--) {
int j = (int) (Math.random() * i) + 1;
int temp = chromosome[i];
chromosome[i] = chromosome[j];
chromosome[j] = temp;
}
}
// 交配,生成新个体
public static Individual crossover(Individual p1, Individual p2) {
int[] c1 = Arrays.copyOf(p1.chromosome, p1.chromosome.length);
int[] c2 = Arrays.copyOf(p2.chromosome, p2.chromosome.length);
int i = (int) (Math.random() * (c1.length - 2)) + 1;
int j = (int) (Math.random() * (c1.length - i)) + i;
for (int k = i; k <= j; k++) {
int temp = c1[k];
c1[k] = c2[k];
c2[k] = temp;
}
int f1 = p1.fitness;
int f2 = p2.fitness;
if (f2 < f1) {
int[] temp = c1;
c1 = c2;
c2 = temp;
f1 = f2;
}
Individual child = new Individual(c1.length);
child.chromosome = (Math.random() < 0.5) ? c1 : c2;
child.fitness = f1;
return child;
}
// 变异
public void mutate() {
int i = (int) (Math.random() * (chromosome.length - 2)) + 1;
int j = (int) (Math.random() * (chromosome.length - i)) + i + 1;
for (int k = i, l = j - 1; k < l; k++, l--) {
int temp = chromosome[k];
chromosome[k] = chromosome[l];
chromosome[l] = temp;
}
}
@Override
public int compareTo(Individual o) {
return Integer.compare(fitness, o.fitness);
}
}
public static void main(String[] args) throws IOException {
int nodeCount = 0, lineCount = 0;
int[][] lines = null;
int popSize = 100, maxGeneration = 1000;
if (args.length > 0) {
// 从命令行参数读取输入
} else {
// 从文件读取输入
BufferedReader reader = new BufferedReader(new FileReader(args[0]));
String[] firstLine = reader.readLine().split(" ");
nodeCount = Integer.parseInt(firstLine[0]);
lineCount = Integer.parseInt(firstLine[1]);
lines = new int[lineCount][3];
for (int i = 0; i < lineCount; i++) {
String[] line = reader.readLine().split(" ");
lines[i][0] = Integer.parseInt(line[0]);
lines[i][1] = Integer.parseInt(line[1]);
lines[i][2] = Integer.parseInt(line[2]);
}
reader.close();
}
Circuit circuit = new Circuit(nodeCount, lineCount, lines, popSize, maxGeneration);
circuit.output();
}