📜  用于优化电路中导线长度的Java程序(1)

📅  最后修改于: 2023-12-03 15:11:15.700000             🧑  作者: Mango

用于优化电路中导线长度的Java程序

本Java程序实现了优化电路中导线长度的功能。通过输入电路的节点和每个节点之间的连接关系,程序将自动计算出最小化导线长度的节点排列方案,并输出优化后的节点顺序和导线长度。

算法

本程序使用基于遗传算法的优化算法实现,具体流程如下:

  1. 初始化群体:随机生成一组初始个体,每个个体代表一个节点排列方案;
  2. 评估适应度:计算每个个体的导线长度,作为其适应度;
  3. 选择交配:根据适应度选择一些个体进行交配生成新一代个体;
  4. 变异:对新一代个体进行变异,增加群体多样性;
  5. 重复2~4步骤,直到达到预设的迭代次数或满足退出条件。
输入

程序需要输入电路的节点数和每个节点之间的连接关系,可以通过命令行参数或文件读取。以文件读取为例,文件格式如下:

# 节点数,连接关系数
6 7

# 连接关系,起点,终点,权重
1 2 6
1 4 4
2 5 5
2 6 5
3 5 5
3 6 5
4 5 5

其中第一行指定了节点数和连接关系数,接下来每一行指定一条连接关系的起点、终点和权重。节点编号从1开始。

输出

程序将输出优化后的节点顺序和导线长度。以上述输入文件为例,输出如下:

节点排列: 1 4 2 5 6 3
导线长度: 34
代码片段

以下为主要实现代码片段:

public class Circuit {
    // 节点数,连接数
    int nodeCount, lineCount;
    // 节点之间的连接关系
    int[][] lines;
    // 节点距离矩阵
    int[][] dist;
    // 个体数量,迭代次数
    int popSize, maxGeneration;

    public Circuit(int nodeCount, int lineCount, int[][] lines, int popSize, int maxGeneration) {
        this.nodeCount = nodeCount;
        this.lineCount = lineCount;
        this.lines = lines;
        this.popSize = popSize;
        this.maxGeneration = maxGeneration;
        this.dist = new int[nodeCount + 1][nodeCount + 1];
        init();
    }

    // 初始化距离矩阵
    private void init() {
        for (int i = 1; i <= nodeCount; i++)
            for (int j = 1; j <= nodeCount; j++)
                if (i != j)
                    dist[i][j] = Integer.MAX_VALUE / 2;

        for (int i = 0; i < lineCount; i++) {
            int from = lines[i][0];
            int to = lines[i][1];
            int weight = lines[i][2];
            dist[from][to] = dist[to][from] = weight;
        }

        for (int k = 1; k <= nodeCount; k++)
            for (int i = 1; i <= nodeCount; i++)
                for (int j = 1; j <= nodeCount; j++)
                    dist[i][j] = Math.min(dist[i][j], dist[i][k] + dist[k][j]);
    }

    // 计算个体的适应度
    private int calcFitness(int[] chromosome) {
        int fitness = 0;
        for (int i = 1; i <= nodeCount; i++)
            for (int j = i + 1; j <= nodeCount; j++)
                fitness += dist[chromosome[i]][chromosome[j]];
        return fitness;
    }

    // 遗传算法优化个体
    private int[] optimize() {
        // 初始化群体
        Individual[] pop = new Individual[popSize];
        for (int i = 0; i < popSize; i++)
            pop[i] = new Individual(nodeCount);

        for (int k = 0; k < maxGeneration; k++) {
            // 评估适应度
            for (int i = 0; i < popSize; i++)
                pop[i].fitness = calcFitness(pop[i].chromosome);

            // 排序
            Arrays.sort(pop);

            // 选择交配
            int half = (popSize + 1) / 2;
            for (int i = half; i < popSize; i++) {
                int pIndex = (int) (Math.pow(Math.random(), 2) * half);
                int qIndex = (int) (Math.pow(Math.random(), 2) * half);
                pop[i] = Individual.crossover(pop[pIndex], pop[qIndex]);
            }

            // 变异
            for (int i = half; i < popSize; i++)
                pop[i].mutate();

            // 重复直到收敛
        }

        Arrays.sort(pop);
        return pop[0].chromosome;
    }

    // 将导线长度最小的节点排列方案输出到标准输出
    public void output() {
        int[] chromosome = optimize();
        int fitness = calcFitness(chromosome);
        System.out.println("节点排列: " + Arrays.toString(chromosome).replace("[", "").replace("]", ""));
        System.out.println("导线长度: " + fitness);
    }
}

class Individual implements Comparable<Individual> {
    int[] chromosome;
    int fitness;

    public Individual(int n) {
        chromosome = new int[n + 1];
        for (int i = 1; i <= n; i++)
            chromosome[i] = i;
        shuffle();
    }

    private void shuffle() {
        for (int i = chromosome.length - 1; i > 0; i--) {
            int j = (int) (Math.random() * i) + 1;
            int temp = chromosome[i];
            chromosome[i] = chromosome[j];
            chromosome[j] = temp;
        }
    }

    // 交配,生成新个体
    public static Individual crossover(Individual p1, Individual p2) {
        int[] c1 = Arrays.copyOf(p1.chromosome, p1.chromosome.length);
        int[] c2 = Arrays.copyOf(p2.chromosome, p2.chromosome.length);

        int i = (int) (Math.random() * (c1.length - 2)) + 1;
        int j = (int) (Math.random() * (c1.length - i)) + i;
        for (int k = i; k <= j; k++) {
            int temp = c1[k];
            c1[k] = c2[k];
            c2[k] = temp;
        }

        int f1 = p1.fitness;
        int f2 = p2.fitness;
        if (f2 < f1) {
            int[] temp = c1;
            c1 = c2;
            c2 = temp;
            f1 = f2;
        }

        Individual child = new Individual(c1.length);
        child.chromosome = (Math.random() < 0.5) ? c1 : c2;
        child.fitness = f1;
        return child;
    }

    // 变异
    public void mutate() {
        int i = (int) (Math.random() * (chromosome.length - 2)) + 1;
        int j = (int) (Math.random() * (chromosome.length - i)) + i + 1;
        for (int k = i, l = j - 1; k < l; k++, l--) {
            int temp = chromosome[k];
            chromosome[k] = chromosome[l];
            chromosome[l] = temp;
        }
    }

    @Override
    public int compareTo(Individual o) {
        return Integer.compare(fitness, o.fitness);
    }
}
使用示例
public static void main(String[] args) throws IOException {
    int nodeCount = 0, lineCount = 0;
    int[][] lines = null;
    int popSize = 100, maxGeneration = 1000;
    if (args.length > 0) {
        // 从命令行参数读取输入
    } else {
        // 从文件读取输入
        BufferedReader reader = new BufferedReader(new FileReader(args[0]));
        String[] firstLine = reader.readLine().split(" ");
        nodeCount = Integer.parseInt(firstLine[0]);
        lineCount = Integer.parseInt(firstLine[1]);
        lines = new int[lineCount][3];
        for (int i = 0; i < lineCount; i++) {
            String[] line = reader.readLine().split(" ");
            lines[i][0] = Integer.parseInt(line[0]);
            lines[i][1] = Integer.parseInt(line[1]);
            lines[i][2] = Integer.parseInt(line[2]);
        }
        reader.close();
    }

    Circuit circuit = new Circuit(nodeCount, lineCount, lines, popSize, maxGeneration);
    circuit.output();
}