📜  数组中的计数倒置的C# 程序|设置 1(使用合并排序)

📅  最后修改于: 2022-05-13 01:56:12.149000             🧑  作者: Mango

数组中的计数倒置的C# 程序|设置 1(使用合并排序)

数组的反转计数表示 - 数组距离排序多远(或接近)。如果数组已经排序,则反转计数为 0,但如果数组以相反的顺序排序,则反转计数为最大值。
形式上来说,如果 a[i] > a[j] 并且 i < j 两个元素 a[i] 和 a[j] 形成一个反转
例子:

Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions:
(8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1).

Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions:
(3, 1), (3, 2) 

方法1(简单):

方法:遍历数组,对于每个索引,找到数组右侧的较小元素的数量。这可以使用嵌套循环来完成。将数组中所有索引的计数相加并打印总和。

算法:

  1. 从头到尾遍历数组
  2. 对于每个元素,使用另一个循环找到小于当前数字的元素的计数,直到该索引。
  3. 总结每个索引的反转计数。
  4. 打印反转计数。

执行:

C#
// C# program to count inversions
// in an array
using System;
using System.Collections.Generic;
  
class GFG 
{
    static int[] arr = 
           new int[] {1, 20, 6, 4, 5};
  
    static int getInvCount(int n)
    {
        int inv_count = 0;
  
        for (int i = 0; i < n - 1; i++)
            for (int j = i + 1; j < n; j++)
                if (arr[i] > arr[j])
                    inv_count++;
  
        return inv_count;
    }
  
    // Driver code
    public static void Main()
    {
        Console.WriteLine("Number of " + 
                          "inversions are " + 
                           getInvCount(arr.Length));
    }
}
// This code is contributed by Sam007


C#
// C# implementation of counting the
// inversion using merge sort
using System;
public class Test 
{
    /* This method sorts the input array and 
       returns the number of inversions in 
       the array */
    static int mergeSort(int[] arr, 
                         int array_size)
    {
        int[] temp = new int[array_size];
        return _mergeSort(arr, temp, 0, 
                          array_size - 1);
    }
  
    /* An auxiliary recursive method that sorts 
       the input array and returns the number 
       of inversions in the array. */
    static int _mergeSort(int[] arr, int[] temp, 
                          int left, int right)
    {
        int mid, inv_count = 0;
        if (right > left) 
        {
            /* Divide the array into two parts and 
               call _mergeSortAndCountInv() for 
               each of the parts */
            mid = (right + left) / 2;
  
            /* Inversion count will be the sum of 
               inversions in left-part, right-part
               and number of inversions in merging */
            inv_count += _mergeSort(arr, temp, 
                                    left, mid);
            inv_count += _mergeSort(arr, temp, 
                                    mid + 1, right);
  
            // Merge the two parts
            inv_count
                += merge(arr, temp, left, 
                         mid + 1, right);
        }
        return inv_count;
    }
  
    /* This method merges two sorted arrays 
       and returns inversion count in the 
       arrays.*/
    static int merge(int[] arr, int[] temp, 
                     int left, int mid, int right)
    {
        int i, j, k;
        int inv_count = 0;
  
        /* i is index for left subarray*/
        i = left;
  
        /* j is index for right subarray*/ 
        j = mid; 
  
        /* k is index for resultant merged
           subarray*/
        k = left; 
  
        while ((i <= mid - 1) && 
               (j <= right)) 
        {
            if (arr[i] <= arr[j]) 
            {
                temp[k++] = arr[i++];
            }
            else 
            {
                temp[k++] = arr[j++];
  
                /* this is tricky -- see above
                   explanation/diagram for merge()*/
                inv_count = inv_count + (mid - i);
            }
        }
  
        /* Copy the remaining elements of left 
           subarray (if there are any) to temp*/
        while (i <= mid - 1)
            temp[k++] = arr[i++];
  
        /* Copy the remaining elements of right 
           subarray (if there are any) to temp*/
        while (j <= right)
            temp[k++] = arr[j++];
  
        /* Copy back the merged elements to 
           original array*/
        for (i = left; i <= right; i++)
            arr[i] = temp[i];
  
        return inv_count;
    }
  
    // Driver code
    public static void Main()
    {
        int[] arr = 
              new int[] {1, 20, 6, 4, 5};
        Console.Write("Number of inversions are " + 
                       mergeSort(arr, 5));
    }
}
// This code is contributed by Rajput-Ji


输出:

Number of inversions are 5

复杂性分析:

  • 时间复杂度: O(n^2),从头到尾遍历数组需要两个嵌套循环,所以时间复杂度是O(n^2)
  • 空间复杂度 O(1),不需要额外的空间。

方法2(增强合并排序):

方法:
假设数组左半边和右半边的反转次数(设为inv1和inv2); Inv1 + Inv2 中没有考虑哪些类型的反转?答案是——在合并步骤中需要计算的反转。因此,要获得需要添加的反转总数是左子数组、右子数组和merge()中的反转数。

inv_count1

如何获得合并()中的反转次数?
在合并过程中,让 i 用于索引左子数组, j 用于索引右子数组。在 merge() 的任何步骤中,如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]

inv_count2

完整的图片:

inv_count3

算法:

  1. 这个想法类似于归并排序,在每个步骤中将数组分成相等或几乎相等的两半,直到达到基本情况。
  2. 创建一个函数merge,当数组的两半合并时计算反转次数,创建两个索引i和j,i是前半部分的索引,j是后半部分的索引。如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]。
  3. 创建一个递归函数,将数组分成两半,并通过将前半部分的反转次数、后半部分的反转次数和合并两者的反转次数相加来找到答案。
  4. 递归的基本情况是给定的一半中只有一个元素。
  5. 打印答案

执行:

C#

// C# implementation of counting the
// inversion using merge sort
using System;
public class Test 
{
    /* This method sorts the input array and 
       returns the number of inversions in 
       the array */
    static int mergeSort(int[] arr, 
                         int array_size)
    {
        int[] temp = new int[array_size];
        return _mergeSort(arr, temp, 0, 
                          array_size - 1);
    }
  
    /* An auxiliary recursive method that sorts 
       the input array and returns the number 
       of inversions in the array. */
    static int _mergeSort(int[] arr, int[] temp, 
                          int left, int right)
    {
        int mid, inv_count = 0;
        if (right > left) 
        {
            /* Divide the array into two parts and 
               call _mergeSortAndCountInv() for 
               each of the parts */
            mid = (right + left) / 2;
  
            /* Inversion count will be the sum of 
               inversions in left-part, right-part
               and number of inversions in merging */
            inv_count += _mergeSort(arr, temp, 
                                    left, mid);
            inv_count += _mergeSort(arr, temp, 
                                    mid + 1, right);
  
            // Merge the two parts
            inv_count
                += merge(arr, temp, left, 
                         mid + 1, right);
        }
        return inv_count;
    }
  
    /* This method merges two sorted arrays 
       and returns inversion count in the 
       arrays.*/
    static int merge(int[] arr, int[] temp, 
                     int left, int mid, int right)
    {
        int i, j, k;
        int inv_count = 0;
  
        /* i is index for left subarray*/
        i = left;
  
        /* j is index for right subarray*/ 
        j = mid; 
  
        /* k is index for resultant merged
           subarray*/
        k = left; 
  
        while ((i <= mid - 1) && 
               (j <= right)) 
        {
            if (arr[i] <= arr[j]) 
            {
                temp[k++] = arr[i++];
            }
            else 
            {
                temp[k++] = arr[j++];
  
                /* this is tricky -- see above
                   explanation/diagram for merge()*/
                inv_count = inv_count + (mid - i);
            }
        }
  
        /* Copy the remaining elements of left 
           subarray (if there are any) to temp*/
        while (i <= mid - 1)
            temp[k++] = arr[i++];
  
        /* Copy the remaining elements of right 
           subarray (if there are any) to temp*/
        while (j <= right)
            temp[k++] = arr[j++];
  
        /* Copy back the merged elements to 
           original array*/
        for (i = left; i <= right; i++)
            arr[i] = temp[i];
  
        return inv_count;
    }
  
    // Driver code
    public static void Main()
    {
        int[] arr = 
              new int[] {1, 20, 6, 4, 5};
        Console.Write("Number of inversions are " + 
                       mergeSort(arr, 5));
    }
}
// This code is contributed by Rajput-Ji

输出:

Number of inversions are 5

复杂性分析:

  • 时间复杂度: O(n log n),使用的算法是分治法,所以每一层都需要遍历一次全数组,并且有log n层,所以时间复杂度是O(n log n)。
  • 空间复杂度 O(n),临时数组。

请注意,上面的代码修改(或排序)输入数组。如果我们只想计算反转,我们需要创建原始数组的副本并在副本上调用 mergeSort() 以保留原始数组的顺序。