Python程序计算数组中的反转|设置 1(使用合并排序)
数组的反转计数表示 - 数组距离排序多远(或接近)。如果数组已经排序,则反转计数为 0,但如果数组以相反的顺序排序,则反转计数为最大值。
形式上来说,如果 a[i] > a[j] 并且 i < j 两个元素 a[i] 和 a[j] 形成一个反转
例子:
Input: arr[] = {8, 4, 2, 1}
Output: 6
Explanation: Given array has six inversions:
(8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1).
Input: arr[] = {3, 1, 2}
Output: 2
Explanation: Given array has two inversions:
(3, 1), (3, 2)
方法1(简单):
方法:遍历数组,对于每个索引,找到数组右侧的较小元素的数量。这可以使用嵌套循环来完成。将数组中所有索引的计数相加并打印总和。
算法:
- 从头到尾遍历数组
- 对于每个元素,使用另一个循环找到小于当前数字的元素的计数,直到该索引。
- 总结每个索引的反转计数。
- 打印反转计数。
执行:
Python3
# Python3 program to count inversions
# in an array
def getInvCount(arr, n):
inv_count = 0
for i in range(n):
for j in range(i + 1, n):
if (arr[i] > arr[j]):
inv_count += 1
return inv_count
# Driver Code
arr = [1, 20, 6, 4, 5]
n = len(arr)
print("Number of inversions are",
getInvCount(arr, n))
# This code is contributed by Smitha Dinesh Semwal
Python3
# Python3 program to count inversions
# in an array
# Function to Use Inversion Count
def mergeSort(arr, n):
# A temp_arr is created to store
# sorted array in merge function
temp_arr = [0]*n
return _mergeSort(arr, temp_arr,
0, n - 1)
# This Function will use MergeSort to
# count inversions
def _mergeSort(arr, temp_arr, left, right):
# A variable inv_count is used to store
# inversion counts in each recursive call
inv_count = 0
# We will make a recursive call if and
# only if we have more than one elements
if left < right:
# mid is calculated to divide the array
# into two subarrays
# Floor division is must in case of python
mid = (left + right)//2
# It will calculate inversion
# counts in the left subarray
inv_count += _mergeSort(arr, temp_arr,
left, mid)
# It will calculate inversion
# counts in right subarray
inv_count += _mergeSort(arr, temp_arr,
mid + 1, right)
# It will merge two subarrays in
# a sorted subarray
inv_count += merge(arr, temp_arr,
left, mid, right)
return inv_count
# This function will merge two subarrays
# in a single sorted subarray
def merge(arr, temp_arr, left, mid, right):
# Starting index of left subarray
i = left
# Starting index of right subarray
j = mid + 1
# Starting index of to be sorted subarray
k = left
inv_count = 0
# Conditions are checked to make sure that
# i and j don't exceed their
# subarray limits.
while i <= mid and j <= right:
# There will be no inversion if
# arr[i] <= arr[j]
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
k += 1
i += 1
else:
# Inversion will occur.
temp_arr[k] = arr[j]
inv_count += (mid-i + 1)
k += 1
j += 1
# Copy the remaining elements of left
# subarray into temporary array
while i <= mid:
temp_arr[k] = arr[i]
k += 1
i += 1
# Copy the remaining elements of right
# subarray into temporary array
while j <= right:
temp_arr[k] = arr[j]
k += 1
j += 1
# Copy the sorted subarray into
# Original array
for loop_var in range(left, right + 1):
arr[loop_var] = temp_arr[loop_var]
return inv_count
# Driver Code
# Given array is
arr = [1, 20, 6, 4, 5]
n = len(arr)
result = mergeSort(arr, n)
print("Number of inversions are", result)
# This code is contributed by ankush_953
输出:
Number of inversions are 5
复杂性分析:
- 时间复杂度: O(n^2),从头到尾遍历数组需要两个嵌套循环,所以时间复杂度是O(n^2)
- 空间复杂度: O(1),不需要额外的空间。
方法2(增强合并排序):
方法:
假设数组左半边和右半边的反转次数(设为inv1和inv2); Inv1 + Inv2 中没有考虑哪些类型的反转?答案是——在合并步骤中需要计算的反转。因此,要获得需要添加的反转总数是左子数组、右子数组和merge()中的反转数。
如何获得合并()中的反转次数?
在合并过程中,让 i 用于索引左子数组, j 用于索引右子数组。在 merge() 的任何步骤中,如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]
完整的图片:
算法:
- 这个想法类似于归并排序,在每个步骤中将数组分成相等或几乎相等的两半,直到达到基本情况。
- 创建一个函数merge,当数组的两半合并时计算反转次数,创建两个索引i和j,i是前半部分的索引,j是后半部分的索引。如果 a[i] 大于 a[j],则存在 (mid – i) 反转。因为左右子数组是排序的,所以左子数组中的所有剩余元素 (a[i+1], a[i+2] ... a[mid]) 将大于 a[j]。
- 创建一个递归函数,将数组分成两半,并通过将前半部分的反转次数、后半部分的反转次数和合并两者的反转次数相加来找到答案。
- 递归的基本情况是给定的一半中只有一个元素。
- 打印答案
执行:
Python3
# Python3 program to count inversions
# in an array
# Function to Use Inversion Count
def mergeSort(arr, n):
# A temp_arr is created to store
# sorted array in merge function
temp_arr = [0]*n
return _mergeSort(arr, temp_arr,
0, n - 1)
# This Function will use MergeSort to
# count inversions
def _mergeSort(arr, temp_arr, left, right):
# A variable inv_count is used to store
# inversion counts in each recursive call
inv_count = 0
# We will make a recursive call if and
# only if we have more than one elements
if left < right:
# mid is calculated to divide the array
# into two subarrays
# Floor division is must in case of python
mid = (left + right)//2
# It will calculate inversion
# counts in the left subarray
inv_count += _mergeSort(arr, temp_arr,
left, mid)
# It will calculate inversion
# counts in right subarray
inv_count += _mergeSort(arr, temp_arr,
mid + 1, right)
# It will merge two subarrays in
# a sorted subarray
inv_count += merge(arr, temp_arr,
left, mid, right)
return inv_count
# This function will merge two subarrays
# in a single sorted subarray
def merge(arr, temp_arr, left, mid, right):
# Starting index of left subarray
i = left
# Starting index of right subarray
j = mid + 1
# Starting index of to be sorted subarray
k = left
inv_count = 0
# Conditions are checked to make sure that
# i and j don't exceed their
# subarray limits.
while i <= mid and j <= right:
# There will be no inversion if
# arr[i] <= arr[j]
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
k += 1
i += 1
else:
# Inversion will occur.
temp_arr[k] = arr[j]
inv_count += (mid-i + 1)
k += 1
j += 1
# Copy the remaining elements of left
# subarray into temporary array
while i <= mid:
temp_arr[k] = arr[i]
k += 1
i += 1
# Copy the remaining elements of right
# subarray into temporary array
while j <= right:
temp_arr[k] = arr[j]
k += 1
j += 1
# Copy the sorted subarray into
# Original array
for loop_var in range(left, right + 1):
arr[loop_var] = temp_arr[loop_var]
return inv_count
# Driver Code
# Given array is
arr = [1, 20, 6, 4, 5]
n = len(arr)
result = mergeSort(arr, n)
print("Number of inversions are", result)
# This code is contributed by ankush_953
输出:
Number of inversions are 5
复杂性分析:
- 时间复杂度: O(n log n),使用的算法是分治法,所以每一层都需要遍历一次全数组,并且有log n层,所以时间复杂度是O(n log n)。
- 空间复杂度: O(n),临时数组。
请注意,上面的代码修改(或排序)输入数组。如果我们只想计算反转,我们需要创建原始数组的副本并在副本上调用 mergeSort() 以保留原始数组的顺序。