📜  Numpy MaskedArray.cumprod()函数| Python

📅  最后修改于: 2022-05-13 01:54:34.279000             🧑  作者: Mango

Numpy MaskedArray.cumprod()函数| Python

numpy.MaskedArray.cumprod()返回掩码数组元素在给定轴上的累积乘积。在计算期间,掩码值在内部设置为 1。但是,它们的位置会被保存,并且结果将在相同的位置被屏蔽。

代码#1:

# Python program explaining
# numpy.MaskedArray.cumprod() method 
    
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
    
# creating input array  
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr) 
    
# Now we are creating a masked array. 
# by making  entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]]) 
print ("Masked array : ", mask_arr) 
    
# applying MaskedArray.cumprod    
# methods to masked array
out_arr = mask_arr.cumprod() 
print ("cumulative product of masked array along default axis : ", out_arr)     
输出:
Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
Masked array :  [[-- 2]
 [-- -1]
 [5 -3]]
cumulative sum of masked array along default axis :  [-- 2 -- -2 -10 30]

代码#2:

# Python program explaining
# numpy.MaskedArray.cumprod() method 
     
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
     
# creating input array 
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]]) 
print ("Input array : ", in_arr)
      
# Now we are creating a masked array. 
# by making one entry as invalid.  
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]]) 
print ("Masked array : ", mask_arr) 
     
# applying MaskedArray.cumprod methods 
# to masked array
out_arr1 = mask_arr.cumprod(axis = 0) 
print ("cumulative product of masked array along 0 axis : ", out_arr1)
  
out_arr2 = mask_arr.cumprod(axis = 1) 
print ("cumulative product of masked array along 1 axis : ", out_arr2)
输出:
Input array :  [[1 0 3]
 [4 1 6]]
Masked array :  [[1 0 3]
 [4 1 --]]
cumulative product of masked array along 0 axis :  [[1 0 3]
 [4 0 --]]
cumulative product of masked array along 1 axis :  [[1 0 0]
 [4 4 --]]