scipy stats.normaltest()函数| Python
scipy.stats.normaltest(array, axis=0)
函数测试样本是否不同于正态分布。此函数检验样本所来自的总体的零假设。
Parameters :
array : Input array or object having the elements.
axis : Axis along which the normal distribution test is to be computed. By default axis = 0.
Returns : k2 value and P-value for the hypothesis test on data set.
代码#1:
# Performing normaltest
from scipy.stats import normaltest
import numpy as np
import pylab as p
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2 )
p.plot(x1, y1, '.')
print( '\nNormal test for given data :\n', normaltest(y1))
输出 :
给定数据的正常测试:NormaltestResult(statistic=146.08066794511544, pvalue=1.901016994532079e-32)
代码#2:
# Performing normaltest
from scipy.stats import normaltest
import numpy as np
import pylab as p
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2 )
p.plot(x1, y1, '.')
print( '\nNormal test for given data :\n', normaltest(y1))
输出 :
给定数据的正常测试:NormaltestResult(statistic=344.05533061429884, pvalue=1.9468577593501764e-75)