Python – 统计中的 Tukey-Lambda 分布
scipy.stats.tukeylambda()是一个 Tukey-Lambda 连续随机变量。它作为rv_continuous 类的实例继承自泛型方法。它使用特定于此特定发行版的详细信息来完成方法。
参数 :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : Tukey-Lambda continuous random variable
代码 #1:创建 Tukey-Lambda 连续随机变量
Python3
# importing library
from scipy.stats import tukeylambda
numargs = tukeylambda .numargs
a, b = 0.2, 0.8
rv = tukeylambda (a, b)
print ("RV : \n", rv)
Python3
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random Variates
R = tukeylambda .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
# PDF
x = np.linspace(tukeylambda.ppf(0.01, a, b),
tukeylambda.ppf(0.99, a, b), 10)
R = tukeylambda.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R)
Python3
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
Python3
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 5, 100)
# Varying positional arguments
y1 = tukeylambda.pdf(x, a, b)
y2 = tukeylambda.pdf(x, a, b)
plt.plot(x, y1, "*", x, y2, "r--")
输出 :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D9D71F48
代码 #2:Tukey-Lambda 连续变量和概率分布
Python3
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random Variates
R = tukeylambda .rvs(a, b, size = 10)
print ("Random Variates : \n", R)
# PDF
x = np.linspace(tukeylambda.ppf(0.01, a, b),
tukeylambda.ppf(0.99, a, b), 10)
R = tukeylambda.pdf(x, 1, 3)
print ("\nProbability Distribution : \n", R)
输出 :
Random Variates :
[ 0.21772132 -0.22664155 -1.59857265 2.60861252 3.14751736 2.06655125
0.62978366 0.28088051 -2.38894301 -1.16725442]
Probability Distribution :
[0. 0. 0. 0. 0. 0. 0. 0.5 0.5 0.5]
代码#3:图形表示。
Python3
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
输出 :
Distribution :
[0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755
0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551
0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143
1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
1.95918367 2. ]
代码#4:改变位置参数
Python3
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 5, 100)
# Varying positional arguments
y1 = tukeylambda.pdf(x, a, b)
y2 = tukeylambda.pdf(x, a, b)
plt.plot(x, y1, "*", x, y2, "r--")
输出 :