在三维几何形状的点被定义为3D空间中的位置是唯一地由一个有序三元组(X,Y,Z)其中x,y,&z是该点的由X轴,Y的距离定义轴和Z轴。
三维几何中的直线定义为在3D中沿两个方向无限延伸的一组点,并由L表示:(x – x1)/ l =(y – y1)/ m =(z – z1)/ n;这里(x,y,z)是在线上任何可变点的位置坐标,(x 1 ,y 1 ,z 1 )是在线上点P的位置坐标,而l,m,& n是方向比(DR)。在3D中,两条非平行平面的交点也形成一条线。
可以将三维(3D)几何形状的平面视为一个表面,以使连接该表面上任意两个点的线段完全位于其上。 3D中平面的一般形式是x,y,z中的一阶方程,即( a x + b y + c z + d = 0 ) ,其中(x,y,z)表示平面上可变点的坐标。
正规形式的平面方程的向量形式
正常形式的平面方程的矢量形式由下式给出:
π: . n̂ = d
Where:
π represents a plane in 3D space.
vector is the position vector of a general point lying on the plane, n̂ is the unit vector normal to the plane and d is the distance of a plane from the origin.
Note: The vector equation of the plane in the form ( . = d) is said to be in the normal form only when is a unit vector normal to the plane and d is the distance of the plane from the origin. If is not a unit vector then we have to divide the above equation by || on both the sides in order to convert it into the normal form. or .n̂ =
例子
示例1:3D空间中距原点且垂直于矢量(2 i + j + 2 k)8个单位的平面的矢量方程式由给出:
解决方案:
d = 8 and = (2 i+ j + 2 k)
n̂ = (2 i+ j + 2 k) / √(22 + 12 + 22)
n̂ = (2 i+ j + 2 k) / √9
n̂ = (2/3) i+ (1/3) j + (2/3) k
Hence the required vector equation of the plane in normal form is
. ((2/3) i+ (1/3) j + (2/3) k) = 8 which can be simplified as . (2 i+ 1 j + 2 k) = 24
示例2: 3D空间中距原点且垂直于矢量(4 i + 3 k)5个单位的平面的矢量方程式由给出:
解决方案:
d = 5 and = (4 i+ 3 k)
n̂ = (4 i + 3 k) / √(42 + 02 + 32)
n̂ = (4 i+ 3 k) / √(25)
n̂ = (4/5) i+ (3/5) k
Hence the required vector equation of the plane in normal form is . ((4/5) i+ (3/5) k) = 5 which can be simplified as . (4 i+ 3 k) = 25
示例3:3D空间中距原点且垂直于矢量(i + 3 j + 4 k)19个单位的平面的矢量方程式由给出:
解决方案:
d = 19 and = (i+ 3 j + 4 k)
n̂ = (i+ 3 j + 4 k) / √(12 + 32 + 42)
n̂ = (i+ 3 j + 4 k) / √(26)
Hence the required vector equation of the plane in normal form is . (i+ 3 j + 4 k)/ (√(26)) = 19
正规形式的平面方程的笛卡尔形式
正常形式的平面方程的笛卡尔形式由下式给出:
π: lx + my + nz = p
Where:
π again represents a plane in 3D space
l, m, n are the DC’s i.e. direction cosines of the the normal to the plane always satisfies this condition (l2 + m2 + n2 = 1)
and p is the distance of the plane from the origin
Note: Any cartesian equation of the plane in the form (ax + by + cz + d = 0) is said to be in the normal form only when a, b, c are the direction cosines of the normal to the plane and |d| is the distance of the plane from the origin.
如果a,b,c不是该平面的法线方向,则我们必须遵循以下步骤:
- 步骤1:在LHS上保留x,y和z的项,在RHS上取常数d。
- 步骤2:如果RHS上的常数项为负,则通过在方程式的两边乘以(-1)使其为正。
- 步骤3:将方程式两边的项除以√(a 2 + b 2 + c 2 ) 。
应用这些步骤后,LHS上的x,y和z系数将成为平面法线的方向余弦,而RHS上的常数项将成为平面距原点的距离。
例子
示例1:3D空间中的平面由(2x + y + 2z – 24 = 0)表示,那么该平面的法线形式的笛卡尔方程式由下式给出:
解决方案:
Taking the constant term on the RHS
2x + y + 2z = 24
Dividing both sides of the above equation by √(22 + 12 + 22) = √9 = 3
(2/3) x + (1/3) y + (2/3) z = 8
Here l = 2 / 3 , m = 1 / 3 , n = 2 / 3 are the direction cosines & p = 8 is the distance from the origin.
示例2: (x + y – z – 1 = 0)是3D空间中的平面,那么该平面的法线形式的笛卡尔方程式由下式给出:
解决方案:
Taking the constant term on the RHS
x + y – z = 1
Dividing both sides of the above equation by √(12 + 12 + 12) = √3
(1/(√3)) x + (1/(√3)) y – (1/(√3)) z = 1 /√3
Here l = 1 / (√3) , m = 1 / (√3) , n = (-1) / (√3) are the direction cosines & p = 1 / √3 is the distance from the origin.
例3:3D空间中的平面的给定为(y + 3 z – 10 = 0),那么该平面的法线形式的笛卡尔方程式由下式给出:
解决方案:
Taking the constant term on the RHS
y + 3 z = 10
Dividing both sides of the above equation by √(02 + 12 + 32) = √(10)
(0/(√10)) x + (1/(√10)) y + (3/(√10)) z = 10 / √(10)
0 x + (1 / √(10)) y + (3 / (√10)) z = √(10)
Here l = 0 , m = 1 / √(10), n = 3 / √(10) are the direction cosines & p = √(10) is the distance from the origin.
笛卡尔形式的点到平面的距离
笛卡尔形式中的点P (x o ,y o ,z o )与平面π: (a x + b y + c z + d = 0)的距离定义为垂直线的长度( L )从该点绘制到平面。
L = |a xo + b yo + c zo + d| / √(a2 + b2 + c2)
例子
示例1:点(2,1,0)与平面(2 x + y + 2 z + 5 = 0)的距离由下式给出:
解决方案:
xo = 2, yo = 1, zo = 0
a = 2, b = 1, c = 2, d = 5
L = |(2 × 2) + (1 × 1) + (0 × 2) + 5| / √(22, 12, 22)
L = 10 / √9
L = 10 / 3
例2:点(0,1,0)与平面(3 y + 4 z = 7)的距离为?
解决方案:
xo = 0, yo = 1, zo = 0
a = 0, b = 3, c = 4, d = -7
L = |0 + (3 × 1) + (4 × 0) – 7| / √(02, 32, 42)
L = |3 – 7| / √(25)
L = 4 / 5
示例3:点(1、1、1)与平面(4 x + 3 z + 9 = 0)的距离由下式给出:
解决方案:
xo = 1, yo = 1, zo = 1
a = 4, b = 0, c = 3, d = 9
L = |(4 × 1) + (0 × 1) + (3 × 1) + 9| / √(42, 02, 32)
L = |7 + 9| / √(25)
L = 16 / 5
矢量形式的点到平面的距离
具有位置向量的点P的距离从平面π: 向量形式的“垂直”定义为从该点到平面绘制的垂直线的长度(L)。
L =
例子
示例1:位置向量为(2 i + j + 0 k)的点到平面的距离 。 (2 i + j + 2 k)= 5由?
解决方案:
= 2 i + j + 0 k
= 2 i + j + 2 k
|| = √(22, 12, 22) = √9 = 3
d = 5 (given)
= (2 × 2) + (1 × 1) + (0 × 2) = 5
L = |5 – 5| / 3
L = 0
示例2:点(5、3、0)与平面的距离 。 (4i + 3j)= 8是多少?
解决方案:
= 5 i +3 j + 0 k
= 4 i +3 j + 0 k
|| = √(42, 32, 02) = √(25) = 5
d = 8 (given)
. = (5 × 4) + (3 × 3) + (0 × 0) = 29
L = |29 – 8| / 5
L = 21 / 5
示例3:点(3、3、1)到平面的距离 。 (i + 3 j + 2 k)= 19由?
解决方案:
= 3 i +3 j + k
= i +3 j + 2 k
|| = √(12, 32, 22) = √(14)
d = 19 (given)
= (3 × 1) + (3 × 3) + (1 × 2) = 14
L = |14 – 19| / √(14)
L = 5 / √(14)